百科问答小站 logo
百科问答小站 font logo



NIPS 2018 有什么值得关注的亮点? 第1页

  

user avatar   2prime 网友的相关建议: 
      

……真无聊

就没人能介绍一下好的paper idea吗

我就看到好几篇我觉得挺有趣的文章

可能是我也是loser


===============

【持续更新】推荐几篇 抛砖引玉


  1. Chen, Tian Qi, et al. "Neural Ordinary Differential Equations."arXiv preprint arXiv:1806.07366(2018).

我一直在做的方向是ode来分析neural network

比如我的icml2018年工作

Yiping Lu,Aoxiao Zhong,Quanzheng Li,Bin Dong. "Beyond Finite Layer Neural Network:Bridging Deep Architects and Numerical Differential Equations"Thirty-fifth International Conference on Machine Learning (ICML), 2018

可以看我之前的回答

ICML 2018 有哪些值得关注的亮点? - 2prime的回答 - 知乎 zhihu.com/question/2768

这篇paper把这个ODE的观点用到了flow model上

flowmodel最贵的一步要算neural network的jacobi 【变量代换公式】

这里用了ode观点一下子把计算量从O(n^2)->O(n)

作者最近有一篇FLORD也挺有意思的

这是我见过最convince的的用ODE给neural network会带来好处的工作!!!!



2. Zhang, Jingzhao, et al. "Direct Runge-Kutta Discretization Achieves Acceleration."arXiv preprint arXiv:1805.00521(2018).(Spotlight)

也是和Su, Candes, Boyd的paper一样用ODE建模nesterov加速的方法

大概是以前M.J 提出来了一系列可以达到O(1/k^p)收敛速度的ode,但是没人能证明的离散的算法收敛阶

这片工作据我所知是第一篇证明了离散的算法的收敛阶的

大概两点吧

1.L-smooth的假设在这里加强了

2.如果用s阶runge-kutta method收敛阶是O(1/k^(ps/(s+1)))可以看到我们的离散算法破坏了算法的收敛阶

其实有趣的事情是貌似在ode里好的格式在优化里会破坏收敛阶,在ode里很差的格式可以在优化里提升收敛阶(nesterov可以看成对gradient flow的线性多步法,就是很不稳定。。。)


3.Jin, Chi, et al. "Is Q-learning Provably Efficient?."arXiv preprint arXiv:1807.03765(2018).

读完看下吧




  

相关话题

  如何评价周志华在微博对 AlphaGo 和机器学习技术的评论? 
  为什么多标签分类(不是多类分类)损失函数可以使用Binary Cross Entropy? 
  换了一个课题组,现在的导师不让我看文献,说我不需要看,这代表什么? 
  如何评价周志华在微博对 AlphaGo 和机器学习技术的评论? 
  现在大学里作弊完全公开化、正常化了么? 
  博士生做科研想 idea 发现早就有人做过了,该怎么调整心态? 
  如何看待华中科技大学 90 后博导胡玥,5 年来发表 SCI 论文 60 余篇? 
  如果不按套路下棋是不是就能赢 Alpha Go 了? 
  如何看待NVIDIA 即将开源的DLA? 
  如何评价CVPR2019程序主席Derek Hoiem的论点:计算机视觉只是记忆,不是智能? 

前一个讨论
如何理解拉格朗日乘子法?
下一个讨论
哈佛大学由于心肌干细胞不存在而大量撤稿,国内所有阳性指标论文是否都涉嫌造假?





© 2025-04-14 - tinynew.org. All Rights Reserved.
© 2025-04-14 - tinynew.org. 保留所有权利