百科问答小站 logo
百科问答小站 font logo



矩阵的本质是什么? 第1页

  

user avatar   xiao-hu-2-94-32 网友的相关建议: 
      

嘿嘿,这题我会。

虽然我不是学数学的,而且,在面对数学大厦的时候,我完全就是一个门外汉,但是,我一直都是一个游戏编程爱好者,而矩阵,在游戏编程中的应用是非常广泛的。

在这里,我就把我的经历分享给大家吧~


2021.9.5日更新

有人评论说,我点的旋转公式写错了,其实,我没有错,你也没有错。

我想,你从某些地方看到的旋转公式是这样的:

这是很多课本上的公式,仔细观察,可以发现,我推导的公式和这个不太一样。

为什么不一样呢?因为,这个是逆时针的旋转公式。

你仔细看我的推导过程,我推导的是顺时针的旋转公式。因为,在虚拟3D世界中,正数代表顺时针旋转更容易理解,在实践中更好处理。这是原因一。

在虚拟摄像机的UVN模型中,也是以正数顺时针旋转来定义的,为了统一,点的变换公式也是以顺时针来推导的。这是原因二。

我说清楚了吧?


矩阵是大学线性代数课程里的内容,当时学的时候虽然一头雾水,不过,牵扯到的问题基本上都是一些加减乘除,所以,我的线性代数课程倒是拿了不错的成绩。虽然分数考得不错,但是,直到毕业后很多年,我都不知道,矩阵这个东西究竟是干什么用的?一堆数字排成矩形,到底有什么用?

其实,我的脑子里一直都有非常多的问题,所以,我非常喜欢去图书馆或者书店之类的地方,试图在茫茫书海里去寻找脑海里那些不怎么确定的问题答案。

你可能会问,为什么不上网查?

我查过,除了查到一堆看似高深、而且完全看不懂的内容之外,就是一些“很厉害”的网友复制粘贴的一些内容。所以,我一直认为,学者把自己的东西写成书籍,才能让人信服。

而且我通过这样的方式也确实解决了一些脑海里的疑问,其中,就包括“矩阵究竟是什么”这样的问题。

你问我什么书?

是一本外国大佬写的3D游戏引擎的书籍,书名就不说了,免得有XX嫌疑。

接下来,就请你跟着我的思路一起,来看一看矩阵究竟是什么吧!


在这里,我先假定你有初中数学的水平。

一、矩阵是什么样子的?

从表面上看,矩阵是一个由多个数字组合起来的方阵,比如说下面这个样子:

从这里我们看出矩阵的基本特征:

1.“矩”的意思是矩形,由数字组成的矩形;

2.“阵”的意思是整齐,这些数字排列起来是非常整齐的,并不会歪歪扭扭;

3.矩阵中,横向的数字是行,竖向的数字是列,行和列都是整数,可以是1或者是n(n是整数);

4.矩阵中,通过“第几行、第几列”这种简便的方式来确定某个数字的具体位置。

以上面这个矩阵为例。它是一个3行×3列的矩阵,数字“1”在第1行第1列,数字“9”在第2行第2列,数字“8”在第3行第2列。

知道矩阵长什么样子后,你可能就会有一个疑问:把数字弄成这个样子,有什么作用?

二、矩阵的由来

你别急,我们一点一点慢慢来讲。

矩阵是一个数学问题,而一提到数学,很多人的第一反应就两个字——不懂

说到底,数学就是1+1的科学,本就是从生活中提炼出来的,到底是什么原因,让数学越发展越让人看不懂呢?

这个问题比较复杂,但我个人的理解是——越发展越深奥的关键点,在于代数的发明。

什么意思呢?

也就是用x这样的未知数来代替计算。

比方有这么一个简单的问题:

我知道一个人1小时可以走2公里,那么,现在他走了10公里,请问他走了几个小时?

这是一个小学生的数学问题,我们很容易就知道他走了5个小时,这是一个很简单的问题。

好了,我再看一个复杂一些的问题:

小明想在花园里养一些鸭子和小狗,于是就去市场买。小鸭子是3块钱一只,小狗是7块钱一只,小明一共花了59块钱;小明数了一下,鸭子和小狗一共有44条腿。那么,你知道小明一共买了多少只鸭子?多少只小狗吗?

如果我们只用小学数学来解决这个问题,是有点烧脑的,因为这个题目中有两个未知数,很多人的脑袋是转不过弯来的。但是,这种题目一用到代数就非常简单了。我们只要设鸭子的数量为x,小狗的数量为y,就可以列出如下的方程:

然后这个问题就很好解决了。

一般的人看到问题解决了,就不会继续思考了,但是对数学家来说,他们看问题的角度和我们是很不一样的。

数学家看到上面这个二元一次方程(初中数学知识)的时候,就会联想到一元一次方程。为了继续说明这个问题,我们把第一个走路的数学问题也用代数的方式列一个方程。设他走了x个小时才走了10公里,那么,可以列出如下的方程来:

作为一个数学家,自然而然就会想到,有没有什么方法,可以把二元一次方程弄得和一元一次方程一样简单,然后解起来也很方便呢?

这就是矩阵的雏形。

数学家发现,这个二元一次方程可以分解成3个部分:

第一部分,是代数x、y左边的系数;

第二部分,是代数x、y本身;

第三部分,是等号右边的数字。

然后,数学家惊奇地发现,一元一次方程也是3个部分:

第一部分,代数x左边的系数;

第二部分,代数x本身;

第三部分,是等号右边的数字。

数学家类比一元一次方程的3个部分,将二元一次方程的3个部分分别提取出来,按照它们原先的排列组合列成了数字组合。

我们用上面的这个二元一次方程来做例子,第一部分是代数左边的系数,按照它们原先的位置顺序,写成了如下的样子:

第二部分是代数本身,它们是上下组合的,所以写成下面这个样子:

第三部分类似第二部分,我们把它写成这个样子:

然后,数学家类比一元一次方程的样子,把这三个部分组合了起来:

你看,是不是和一元一次方程非常像?

这就是矩阵被创造出来的大致过程了。

三、探究矩阵的乘法

方程写出来了,那怎么计算呢?

10除以2很明显是5,那这个右边一坨除以左边一坨,是个什么玩意儿?

所以,我们还得探究一下矩阵的乘法计算过程。

我们先观察一下上面刚刚写出来的矩阵和原本方程的有什么相通的地方:

你发现了什么?

你可以思考一下,为了可以更容易观察,我们把矩阵等式做个小小的变化,就是把二元一次方程的等式代入矩阵等式的右边:

然后,这个乘法的过程是不是一目了然了呢?

首先看等式右边第一行,它是等式左边第一项的第一行和第二项的第一列的数字分别相乘相加;然后是右边第二行,是左边第一项第二行和第二项第一列的数字分别相乘相加。用图示的话,是这样表示的:

数学家们从这个简单的例子中总结了如下2个关于矩阵相乘的规律:

1.第一个矩阵的列数必须和第二个矩形的行数相等,才能相乘。

我们用

数字1×数字2

的形式来表示一个矩阵的行列属性,那么,只有m×n的矩阵和n×l的矩阵才可以相乘,最后会得到一个m×l的矩阵。

就拿我们上面的矩阵为例,左边是一个2×2的矩阵,右边是一个2×1的矩阵,那么相乘之后,就会得到一个2×1的矩阵。

2.矩阵相乘不满足交换律。

道理非常简单,矩阵A×矩阵B可能是合法的,但矩阵B×矩阵A可能就没有意义。比方说,矩阵A是4×2的矩阵,而矩阵B是2×3的矩阵,A×B满足上面的要求,而B×A就无法解释了,因为3和4明显不一样。

四、关于单位矩阵

因为有了矩阵,复杂的多元方程就可以简化成和一元一次方程一样。由于两者很像,数学家就会想,一元一次方程中有一个特殊的系数“1”,那矩阵中有没有类似的呢?

不研究不知道,一研究就发现还真有。数字1的唯一特点,就是和任何数相乘不会改变它们的值。相似的,矩阵中的“1”也应该有这样的功能,和其他矩阵相乘不会改变其他矩阵。

单位矩阵可以推导出来。还是用上面的例子,就是下面这个矩阵乘法:

如何让右边的多项式等于x或者是y呢?很简单,把3改成1,把7改成0,再把2改成0,把4改成1,然后,等号右边的矩阵就是x和y的矩阵了。

把这些改变套回左边第一个矩阵,这个矩阵就变成下面这个样子了:

经过数学家们长期的研究发现,所有的单位矩阵都有如下2个特点:

1.是正方形矩阵;

2.除了左对角线上的数字是1之外,剩下的数字全部是0,下面图中就是一个单位矩阵了。单位矩阵一般用大写的粗体I来表示。

我想,我应该说明白了吧?


这个问题还有后一部分,矩阵有什么用?

确实,如果矩阵发明出来只是为了方便解方程的,那就不算什么。矩阵之所以“强大”,主要还是因为矩阵的实际应用。

矩阵在其他方面有什么应用我不太了解,不过,矩阵在计算机图形学,尤其是3D图形计算中的作用是极大的。

所以,我打算从计算机角度来说一说矩阵的应用。


如果你认真看了上面的内容,就能知道关于矩阵的两个重要知识点:矩阵的由来和矩阵的乘法。

这个时候,你的脑子里估计有个疑问:矩阵只不过是数学家换一种方法来解方程的“戏法”罢了,具体有什么作用呢?

如果这个世界上没有电脑,我们还停留在用纸和笔计算的时代,那矩阵可能真的就没什么太大的用处了。在大多数人的眼中,矩阵除了可以快速解多元一次方程外,没有其他任何用处。说真的,在现实生活中,我们用到矩阵的地方也非常非常少。

我一直把某一个道理信奉为真理:如果你觉得某个问题难以解决,不妨好好去学一学数学,没准儿,数学家在好几百年前就已经有了解决方法了

矩阵就是这样,当时被发明出来的时候很多人并不理解,一个快速计算方法有什么用?直到有了计算机,直到程序员在处理计算机3D问题时遇到了非常大困难的时候,计算机前辈才发现矩阵的真正用处——它能大大提高3D问题中复杂计算的效率。

打个比方你就明白了。在电脑上运行3D程序,就好比是在路上开车。而矩阵,就相当于是一个额外的氮气加速器。假设,在没有矩阵的情况下,车子只能开10码,那么,有了矩阵之后,车子就能开到200码的样子了。

在程序员使用矩阵之前,他们也不知道计算机在处理矩阵的时候那么给力,所以,这应该算是一个意外之喜吧?


这里顺带插一句,聊一聊一个小故事。

你可能觉得,计算机3D图形使用矩阵是比较晚的事情,起码要到2000年吧?

其实不是的,在80年代初,那个时候电脑的CPU还是8位的(现在CPU普遍64位),电脑内存可能才1~2M(你没看错,和现在动不动16G内存比起来,是不是少得可怜?),在这种“低配置”的情况下,3D游戏已经开始发展了。

当时有很多厉害的程序员前辈在写3D游戏程序,其中有一个叫做Space Duel的3D游戏程序让其他的程序员叹为观止!原因就是这个游戏程序在8位计算机上表现出了非常惊人的运行效率!

为什么?

据当时的内部人员透露,这个3D游戏程序使用了矩阵来进行了3D图形运算。(没错,这些内容都是我看书才知道的)


好了,大致了解了简单的内容之后,我们就来看一看矩阵在3D游戏编程中到底是怎么用吧。

一、虚拟3D中的数学计算操作

首先,我们简单了解一下游戏中的3D世界。

第一步,我们要在一个虚拟的3D坐标系中构建3D世界;

第二步,我们把各种各样的虚拟3D物体(建模得到的)加入到这个虚拟世界中;

第三步,就是用虚拟摄像机把虚拟3D场景拍摄下来。

这个过程中,第二步和第三步都牵扯到了大量的数学计算。

举个小栗子,你就知道有多少计算过程了。

假设,我要在虚拟3D世界中放置一辆小汽车,然后显示在电脑屏幕上,计算机在背后的操作过程大致如下。

①先确定虚拟3D世界的坐标系,一般的,我们会采用左手系,也就是屏幕中心为坐标原点,右方向是X轴正向,上方向是Y轴正向,垂直屏幕朝里是Z轴正向。

②小汽车放在虚拟3D世界中,总得有个位置吧?也就是位置信息,计算机根据位置信息把这辆小汽车加入到场景中,需要进行大量的数学计算。

③小汽车在三维软件(比如3dmax)中建模的时候,是最大化建模的,各个细节都会画出来,但是,我们在虚拟3D世界中不一定要显示得那么大,也就是说,小汽车需要按照设计者预定的大小进行缩放,这个过程,也需要进行大量的数学计算。

④同理,小汽车在三维软件中创建的时候,可能是按照正面的视角来创建的,如果我们直接这样放进去,小汽车可能一直都是车头对着我们,所以,我们还需要把小汽车按照一定的角度进行旋转,这样,小汽车才能正确放置在虚拟3D世界的公路上面,这个过程,更需要进行大量的数学计算。

⑤小汽车不可能不动吧?这个程序或者是游戏的主角就是小汽车,那么,小汽车需要移动、转弯、加速等等,就是说,使用者在操控小汽车的时候,也需要对小汽车进行移动、旋转、缩放的操作,这也需要大量的数学计算。

⑥你以为这就完了吗?这一系列操作过后,小汽车的确正确地放在了虚拟3D世界中,可是,我们看不到啊!因为我们的电脑屏幕是二维的,二维屏幕只有x、y两个维度的坐标,怎么可能直接显示三维的东西呢?所以,三维世界要显示在二维屏幕上,需要进行投影操作,也就是把3D世界中的所有内容都投影到一个平面上。这个过程想想就复杂,就会需要更多的数学计算

总之,要在屏幕上把一辆3D小汽车正确地显示出来,耗费的数学计算量是无法想象的!

那么,有没有解决办法呢?

有,答案就是矩阵。

好,我们先喘口气。

……

好了吗?

如果你只是想简单知道矩阵是干什么的,了解到上面就足够了。而我本人比较喜欢刨根问底,所以,接下来的内容可能有那么一点点复杂。

我们继续。

仔细分析一下上面的①~⑥的过程,我们很容易就能总结出来,3D小汽车在虚拟3D世界中只会进行4种操作:

a:小汽车位置的移动;

b:小汽车的旋转;

c:小汽车的缩放;

d:小汽车的投影。

而这4个操作在3D图形学中有专有的名词,分别叫做平移旋转缩放投影

如果没有矩阵的话,每一种基本的操作都会牵扯到巨量(看清楚,不是大量,是巨量)的数学计算。因为,任意的3D模型都是由最基本的三角形组成的,而一辆小汽车,可能有成百上千个三角形组成。拿最简单的平移操作来讲,要移动小汽车,实际上移动的是这成百上千的三角形!也就是说,每个三角形都需要进行一遍相同的数学加减乘除操作,这个计算量不用我说,你也应该知道很大。

然而,如果把数学计算用矩阵代替的话,计算量就会骤减!因为,很多复杂的数学计算可以写在一个矩阵框框里面,然后,简单地用一个矩阵乘法,结果就出来了!

好,接下来,我们简单来推导一下这些矩阵,这样,你对矩阵的理解就能更加深刻了。

二、从旋转开始

根据前辈们的经验,虚拟3D物体的操作过程是有顺序的,是按照缩放->旋转->平移->投影的步骤来的。

为什么是缩放->旋转->平移->投影的步骤呢?

还是拿小汽车为例。当小汽车从数据变成图形的时候,最开始是处于虚拟3D坐标系原点的,而且,初始的小汽车模型数据是优化过的,其中很多数据都是对称的或者干脆是0,也就说,最原始的小汽车数据是最容易处理的。这几个步骤中,平移是最简单的,缩放稍微复杂些,旋转是最复杂的了,而投影必须在最后一步。

如果不按这个顺序呢?也是可以操作的,只不过,会带来性能和效率上的问题。

如果我们先平移后旋转,就相当于让简单的平移把最原始的优化数据破坏了,数据一旦被破坏就会变复杂,然后,这个“复杂化”的数据再进行旋转的话,会加大CPU的负荷。

如果我们先旋转后平移,相当于最优的数据先进行复杂计算,然后再进行简单的平移计算,就能大大提高3D图形数据的处理速度了。

明白了这一切之后,我们再深入了解一下3D物体的旋转。

由于上面先旋转后平移的原则,我们的旋转都是在3D坐标系原点进行的。一开始我们会觉得旋转很简单,不就是转动个角度吗?仔细一想发现并不简单,因为物体是自由的,它可以绕着任何一条直线进行旋转,问题一下子就变得复杂了。

但是,根据程序员们的经验,任何一个物体的复杂旋转问题,都可以分解成相对简单些的“绕轴”旋转,也就是绕着x轴、y轴或者z轴之一进行旋转。因为任一旋转轴都可以看成是一个向量,这个向量可以分别在三个轴上进行投影,某个物体绕着该轴旋转的时候,我们可以用三角函数的知识得到该物体绕3个轴分别旋转了多少角度。总而言之一句话,绕着3个方向轴的旋转,可以合成3D物体的任意旋转。

所以,我们只需要知道,一个3D物体绕某个方向轴旋转应该如何计算,然后,我们就可以处理3D物体的任意旋转了。

我们可以把问题再简化一下,这回旋转的不是小汽车了,而是一个立方体(旋转的原理是一样的),立方体的正中心就处于3D坐标轴的原点。

好了,我们试着让这个立方体绕着z轴顺时针旋转一个角度θ。

你发现了什么?没错,一个立方体绕着z轴旋转的时候,里面任意一点的z坐标是不变的。为什么z坐标不变呢?你想一想,要改变立方体的z坐标,是不是需要让立方体在z轴方向上移动呢?而现在,立方体只是绕着z轴旋转,根本就没有移动。如果把这个立方体投影到z轴上(降到一维),它就变成了一条直线,而旋转的过程中,这条直线是不会变的。

也就是说,立方体绕着z轴旋转,我们只需要重新计算旋转后的x、y坐标就可以了,然后,这个相对复杂的3D问题一下子就变成一个2D问题了。

在3D游戏编程中,所有的3D物体都是由一个一个三角形组成的,而三角形是由3个小点组成的,也就是说,立方体的旋转过程,可以简化成一个又一个点的旋转接下来,我们就在2D坐标系下推导一下任意一点的旋转计算过程。

其实,这个问题使用初中数学的知识就可以解决了,我们先看下图。

画一个最常见的x-y坐标系,然后点A绕着原点旋转一个θ角度来到了A’点,已知A点的坐标是(x,y),如何计算A’点(x’,y’)的坐标呢?

这个问题看起来难解,其实我们只要按部就班就能解决。

1.首先我们把A点和A’点和原点O连起来,那么OA和OA’的夹角为θ;

2.设OA’和x轴的夹角为φ,这样的话,方程就很好列了;

3.然后列A点的方程,设OA的长度是r,可以得到如下的方程:

4.接下来再列A’点的方程:

5.然后,我们用和差公式展开A点的方程:

6.把A’点的方程代入A点的方程,就可以消除r这个变量了:

7.在A点方程两边乘以cosθ,就可以得到第一个关系方程:

8.在A点方程两边乘以sinθ,就可以得到第二个关系方程:

9.根据三角函数的平方公式,x’和y’右边的平方和为1,所以,两个方程可以写成下面这样的最终形态:

根据最开始矩阵的知识,我们可以把这两个方程写成下面的矩阵样子:

这下明白了吧?一个点的旋转,可以非常简单地仅仅利用一个矩阵进行解决。

我们做个简单的对比:

如果不用矩阵的话,这个旋转的过程需要4次乘法、2次三角函数计算、2次加法

如果我们用矩阵计算的话,只需要进行1次矩阵乘法操作

你可能会说,矩阵的计算不还是要展开吗?如果你这样想的话,那就错了。因为矩阵非常对称的关系,而且用在3D图形学中的矩阵都是正方形矩阵,计算机在处理矩阵乘法的时候有很多非常特别的方法,非常快速就能计算出结果。所以,用矩阵乘法来代替普通的乘法和加法,能大大提高3D图形处理的效率。

我们上面得到的矩阵乘法,是2D点使用的,但我们是3D空间,里面是3D的点,该如何推导呢?其实很简单,因为绕z轴旋转的时候z坐标是不会变的,我们只需要把上面得到的二维矩阵扩展到三维就可以了。

我们先改变一下矩阵的写法,把上面竖着写的x、y变成横着写的x、y:

这样的话,更符合我们的视觉习惯,也就是一个点的坐标乘以矩阵得到另一个坐标。

然后,我们要把二维坐标变成三维坐标,也就是在两边各添加一个相同的z坐标:

按照矩阵乘法的规则,我们得到了如下的三维点旋转的变幻矩阵:

这是绕z轴的旋转矩阵,还有绕x轴、y轴的旋转矩阵,推导过程就不重复了,和z轴的推导过程类似,我在这里就把结果写出来吧。

三、从移动操作看齐次坐标

旋转矩阵是除投影矩阵外最复杂的一个了,不过,你跟着我上面的思路,应该不难理解吧?

也就是说,不仅旋转可以变成矩阵乘法,缩放、平移、投影也能变成矩阵乘法。我们先看平移的过程。

平移其实很简单,就是一个简单的加法而已。比方说,这回是三维空间中的点A,坐标是(x,y,z),我们要把它移动一段距离。根据前面学习的向量知识,移动的过程可以看成是一个向量加法的过程。不理解?我们画个图你就明白了。

我们要得到A’点的坐标很简单,只要计算

(x,y,z)+P

的结果就行了。假设向量P的坐标是(Px,Py,Pz),那么,A’点的坐标就是下面这样子的:

A’ = (x+Px,y+Py,z+Pz)

但是,我们的目的不是加法,而是要把这个平移的过程写成类似矩阵相乘的样子,比方说下面的这个样子:

我们可以直接解方程,然后代入这个矩阵,这个矩阵就会变成下面的样子:

不用我来评价你也知道,变换矩阵写成这个样子肯定是不行的。原本只是一个简单的加法,变成矩阵之后,竟然活生生多出了除法的计算!而且,当A点坐标中有0分量的时候,这个变换矩阵还不能用!这不是明显的简单问题复杂化吗?即便计算机在处理矩阵乘法的时候有优势,但我们也不能这么造啊!

当年的程序员们也发现了这个问题,不过,他们很快就解决了这个问题,方法很简单——给三维空间中的点增加一个齐次坐标

也就是说,A点的坐标不再是(x,y,z),而是变成了(x,y,z,w)。实际上,披着程序员外衣的数学家们又一次创造了新东西(齐次坐标和四元数是类似的,四元数是由数学家William Rowan Hamilton于19世纪发明的,是不是很早?),齐次坐标的意义并没有如此简单,但我们在3D游戏编程中用到的仅仅是w=1的情况。为什么呢?因为w=1后,不会改变3D点的性质,而且还能简便计算。

给点增加齐次坐标之后,这个平移矩阵的问题就变成了一个4D的问题了:

由于平移向量P是已知的,再根据矩阵乘法的特性,平移矩阵的推导并不难。我们拿x->x’的计算过程来推导一下。

x’是目标矩阵的第一列,也就是A点形成的1×4矩阵的第一行和平移矩阵的第一列分别相乘相加,假设平移矩阵第一列是c1、c2、c3、c4,那么可以得到如下的等式:

这个等式很容易解,很明显可以得到如下的答案:

c1=1

c2=0

c3=0

c4=Px

我们用这个方法可以很容易把平移矩阵的4列全部推导出来,最终形成的平移矩阵是下面这个样子的:

你看,增加了一个齐次坐标之后,这个平移矩阵不仅容易理解,而且还没有增加计算量,可以靠着计算机的矩阵加速来快速计算,最主要的是,平移的过程也变成了一个简单的矩阵乘法过程了。(在3D图形学中,平移问题引申出来的还有仿射空间的概念,有兴趣的朋友可以自己探索探索)

其实,程序员们基本上都有强迫症。旋转矩阵是3维的,为什么平移矩阵要4维?为了强迫症,程序员们把所有的变换矩阵都扩展到了4维,也就是说,全部增加了齐次坐标。推导过程很简单,我就直接把4维的变换矩阵全部列出来吧。


关于3D图形学中的这个矩阵变换,有很多人是一边疑惑一边学习的,他们最大的疑惑就是——为什么3D坐标非要用4D的矩阵?

那是因为那些人学习的时候没有一个思考的过程,他们的老师直接把变换矩阵教给了他们,而不去说明一下,当然会疑惑了。但是在这里,只要你一步一步跟着我上面的思路,就不会有这样的疑惑,因为道理很简单:为了让平移的过程简便化,也为了程序员们的“强迫症”。


四、关于投影矩阵

都说道这里了,干脆一口气把最后的投影矩阵也说了吧!

我们已经知道,投影过程是把3D内容投影到一个二维平面上,这个问题看起来毫无头绪,但生活中是有活生生例子的。

什么例子呢?就是——拍电影

电影是显示在二维幕布或者屏幕上的,可显示的却是3D世界,说得严谨一些,显示的就是3D世界在摄像机的感光平面上的投影图像罢了!

也就是说,我们只需要模仿摄像机的工作模式,就能慢慢推导出投影的过程了。

好了,假设你来到了虚拟的3D世界,现在举着虚拟的摄像机在拍摄虚拟的3D世界。由于你是在虚拟世界中,你可以没有重力的影响,那么,你会有哪些动作呢?

你拿着摄像机,起码有如下的一些操作:

①移动;

②左右转动镜头;

③上下转动镜头。

我们不需要其他的操作了,因为其他的操作都能从这3个基本操作中合成出来。

但是,这么看的话,问题还是很复杂,因为摄像机要运动,计算的时候要怎么入手呢?

先放下这个问题,我们可以把问题进行简化:假设摄像机一直不动,投影矩阵是什么样的呢?

为了更简化问题,我们让摄像机处于世界坐标原点的位置,那么,投影的过程是什么样的呢?

这里有2个参数。

①摄像机是一个透镜组合(其实我们眼睛也是透镜组合),对于透镜,有一个成像的平面,这个平面距离透镜组(摄像机)是有一定距离的,我们把这个距离叫做视距(你可以直观感受到,你把一个物体靠近眼睛,太近的话,根本看不清,而且,当你眼睛看某个距离的物体时,那些更近的物体就会模糊,在摄像机的表现上就是前景虚化了)。而视距就是我们的第一个参数,假设是d。

②投影的时候有个视角的问题,就是摄像机能够看多宽的视野。视野不能太窄也不能太宽。玩过摄影的朋友应该知道,视野太窄的远摄镜头不适合拍摄视频,只适合打鸟;视野太宽的广角镜头也不适合拍摄视频,因为画面会变形,看起来不真实。最合适拍视频的就是正常视野的镜头,一般是50mm左右的镜头。在3D游戏中,为了数学计算的简便,我们一般取的是90°视野的虚拟摄像机,这样拍出来的画面不仅没什么畸变,而且数学计算很简单(直角在三角函数中就是很简便的)。

好了,现在假设三维世界中某个点p(x,y,z)要投影到这个视距为d、视角为90°的虚拟摄像机投影面上,要如何列方程呢?

首先,z坐标就没有了,因为在投影的过程中“降维”了,我们只需要计算这个条件下的x、y坐标就行。

如何计算这两个坐标呢?

我们只需要在x-z平面上和y-z平面上分别计算坐标就行。

拿x-z平面来看,可以画出如下的投影过程图:

我们不需要z坐标,只需要x坐标,那么,很容易就能根据相似三角形列出方程:

然后,在y-z平面也能很容易列出y坐标的方程:

我们可以看到,z0就是视平面的距离d,这样从(x1,y1,z1)这个点投影到视平面上的(x0,y0)的方程就很容易列出来了,我们直接把矩阵加上去:

结合我们上面列的2个方程,我们很容易就能计算出这个矩阵的数值:

分母有个z1怎么办?矩阵需要通用,不可能每一次数学计算之前都重新计算一遍矩阵,那样的话,干脆不用矩阵算了,毕竟,投影的过程不是很复杂,用普通的数学计算方式性能也差不到哪里去。

不过,在一个3D程序中统一使用矩阵是有很多好处的,因为,可以把一系列的矩阵全部按顺序先乘起来,最后,原始坐标只要乘以一个矩阵就能变换到投影坐标了,性能提升是非常可观的。

既然如此,这个分母中的z1怎么办?

这里,就体现出齐次坐标的用处了。我们可以把投影矩阵写成如下4×4的样子:

这个相当于是把目标点(x0,y0)分别乘以z1倍,扩展到4维的时候,把齐次坐标w也乘以了z1倍,这样,这个矩阵就和z1没有关系了。

然后,我们在使用这个矩阵的时候,只要在计算过后通过重置齐次坐标w为1的操作,就能保证最后坐标的正确性。

也就是说,当摄像机位于零点,正对z轴,并且视距是d、视角是90°的时候,投影矩阵就是上面的那个样子。

没错吧?

实际上,还有一个小问题,那就是屏幕宽/高比的问题。我们计算的这个投影矩阵是基于正方形投影面来说的,而实际上,电脑屏幕或者其他屏幕很少有正方形的,宽度和高度基本上都不一样。也就是说,当正方形投影图像显示在长方形的屏幕上时,图像就会产生拉伸而显得不真实。

解决的方法其实很简单,就是在投影变换的时候,把y轴的投影按照屏幕的宽/高比进行缩放就可以了。

假设屏幕是4:3的,那么,在投影变换的时候,让y轴的投影乘以4:3的倍数,这样,y方向的内容就会相应变少,最后,这个正方形投影面映射到屏幕上的时候,图像就会变得正常了。

所以,真正的投影矩阵应该是下面这个样子:(a代表的是屏幕的宽/高比)

至此,投影矩阵的问题也解决了。

那么,问题真的解决了吗?

答案很明显是没有,因为,我们只是计算了一个特殊情况下的投影矩阵。我们玩3D游戏的时候,总不可能一直让摄像机在原点不动吧?真那样的话,还玩个啥?

解决方法其实也很简单:

我们把世界坐标系的原点移动到相机身上,然后,让这个坐标系的z轴朝着摄像机的方向不就行了吗?

没错,就是这样的解决方法。

相当于,把虚拟3D世界的所有物体再次旋转、移动一次,保证摄像机在零点并朝向z轴就行了。

这个过程是不是很熟悉?

没错,就是上面的旋转和平移操作,也是可以解出一个4×4矩阵来的。

而这个操作,被称为相机变换,也就是世界坐标到相机坐标的变换。

相机变换矩阵最麻烦的地方就在于旋转了,而其中的关键,就在于相机模型的建立。

这里,早期的那些披着程序员外衣的数学家们又开始了建模。通过不断地探索和思考,“数学家”们创建了2个可行的相机模型:

①欧拉相机模型;

②UVN相机模型。

什么是欧拉相机模式呢?就是通过欧拉角的启发来定义的相机模型。欧拉角有3个角度,分别定义了三维坐标系中某个点绕着3个轴的旋转角度,我们只要知道这3个角度,就能通过计算得到目标点的具体位置。

有了欧拉角的摄像机,就能通过欧拉角的分量来进行世界坐标的旋转了。

具体来说,欧拉相机模型有4个参数,分别是相机的位置和相机的3个欧拉角度。

但是,欧拉相机模型在实践中不是很好用。这个相机模型用的是角度,我们需要重新定义变量,在编程的时候并不是特别方便,而且在转化的时候也需要一定的计算量。

游戏的实时性那么高,披着程序员外衣的数学家们怎么可能甘心呢?

于是,这些数学家在欧拉相机模型的基础上改进得到了一个新的相机模型——UVN相机模型

从数学本质上来看,两者的区别不大,欧拉模型用的是角度,而UVN模型用的是向量,而向量更适合矩阵计算,所以,现在大部分3D引擎的相机模型都是UVN相机模型。

那么,UVN是什么意思呢?其实很简单,它就是一个相机坐标系而已

相机坐标变换的意义在于,要把玩家或者用户从虚拟世界转移到相机世界中,所有的虚拟物体都要以相机为基准重新定义一次。

想一想这个过程:

最开始的时候,我们的主角是虚拟3D物体本身,关于三角形和顶点的构建都是基于3D物体的本地坐标系的;

所有3D物体准备好之后,必须在虚拟3D世界中安排、组织好,虚拟3的世界成了主角,所以有了世界坐标系,从本地坐标到世界坐标的变换就是世界坐标变换

同理,现在的主角是虚拟摄像机,而从世界坐标到相机坐标的变换就是相机坐标变换

相机坐标系是什么样子的呢?

我们用的是左手系,那么,虚拟摄像机用的也是左手系以虚拟摄像机的位置为原点,右方向、上方向、前方向为正方向,这样的三维正交坐标系就是相机坐标系。和左手系的XYZ坐标系一样,坐标轴有个名字:相机右方向是U轴,相机上方向是V轴,相机前方向是N轴。明白了吧?UVN的相机模型,其实就是一个相机坐标系。

这样的坐标系主要有3方面的好处:

①设置起来很方便;

②程序员理解起来也简单;

③坐标变换的矩阵也容易推导。

为什么设置起来方便呢?我们只需要4个向量就能描述这个摄像机了,分别是位置向量右向量上向量目标向量,也就是说,4个不同意义的参数,数据格式是一样的!你说,是不是很方便?

那么,程序员理解起来为什么简单呢?因为,这样的相机坐标系可以理解成一架灵活的战斗机,虚拟摄像机的移动和旋转完全可以理解成战斗机的移动和旋转。

把虚拟摄像机理解成一架战斗机,现在,战斗机悬停在虚拟3D世界中的某个位置上,战斗机有哪些操作呢?

①战斗机可以沿着N轴方向移动,这个操作被称为移动(move)

②战斗机可以沿着V轴方向移动,这个操作被称为飞行(fly)

③战斗机可以沿着U轴方向移动,这个操作被称为平移(strafe)

④战斗机可以改变飞行的方向,也就是自身绕着V轴旋转,这里有一个专有名词叫做偏航(yaw)

⑤战斗机可以向上方飞跃,也能向下方俯冲,相当于是点头的操作,也有一个专有名词叫做倾斜(pitch)

⑥战斗机可以绕着N轴一直旋转,是一种很酷的飞行方式,这个专有名词叫做滚转(roll)

根据这6个名词,程序员就很容易理解虚拟摄像机的移动和旋转了,也能通过战斗机的比喻来彻底记住这个过程。

最后,是变换矩阵比较容易推导。

坐标变换的目的是把xyz坐标系中的点p变换到uvn坐标系中的点p’。坐标要如何变换呢?方法与世界坐标变换类似——先旋转后平移

点p是xyz坐标系的,现在先不管虚拟摄像机的位置,把uvn坐标系和xyz坐标系的原点重合,你发现了什么?

没错,p’点相当于是xyz坐标系在uvn坐标系上的投影!而投影的计算非常简单,靠着向量的点积就能解决。

也就是说,点p在xyz坐标系中的向量OP分别乘以uvn的单位向量,就能得到p’点在uvn坐标系上的分量值。

比如,点p的向量是p,uvn的单位向量分别是uvn,那么p’点的坐标就是

p·up·vp·n)。

为了和世界坐标变换矩阵一样,我们的点也需要是4维的,所以,p’点的正确坐标应该是:

p·up·vp·n,1)。

我们可以把这个过程转变成矩阵相乘的过程,就可以得到如下的旋转矩阵:

其中的xyz分别代表的是单位向量在UVN坐标系中的分量大小。

旋转矩阵已经有了,接下来就是平移矩阵。上面已经推导过平移矩阵了,我们可以直接用。假设虚拟摄像机在世界坐标的位置向量是Pos,由于我们已经把UVN坐标系移动到了原点,所以,这个位置的移动是负的,也就是说,在UVN坐标系中,所有物体都应该平移-Pos的距离(注意负号)。

根据前面的平移矩阵,我们很容易写出这个四维的平移矩阵:

然后,我们只需要把旋转矩阵和平移矩阵相乘,就能得到UVN相机模型的相机变换矩阵了

矩阵最后一行是相机位置向量和单位向量的点乘,最后的结果是一个数值,记得有个负号。

最后,要使用这一系列矩阵的时候,按照

旋转矩阵×平移矩阵×缩放矩阵×相机矩阵×投影矩阵

的过程先计算好一个总体的变换矩阵,然后,直接用原始的坐标乘以这个变换矩阵就OK了!当然,别忘了最后要用w坐标来一次齐次计算。


好了,关于矩阵在计算机3D图形处理方面的应用介绍就说完了。我想,你应该能明白矩阵的用处了吧?


user avatar   Masaki.Ryuu 网友的相关建议: 
      

看到现有的前排答案都与我的观点差异巨大, 也不是说错, 但肯定不够本质. 所以就决定简单地分析一下矩阵在生产生活中的地位与所扮演的角色.

以前写的东西可能只有圈子内的学生才愿意看, 比如说:

于是决定就此给出一个比较说人话的版本.

开头我希望引用一下本科线代老师介绍矩阵时的第一句话:『矩阵就是一张数表.』 这位老师的线代课程讲得极其糟糕, 他给出这么一句话之后真就纯讲了一整个学期的数表四则运算···

后来我也了解到了大家口中的那些听起来还稍微有点儿酷的说法, 什么矩阵就是时空操作, 具体一点儿就是说就是空间的旋转拉伸, 或者可能跟更准确地说矩阵就是线性变换. 然后看到了一些例子发现, 哇酷欸, 还真就是这样, 于是我就对那个老师的说法充满了鄙夷, 认为他对线代的理解极其肤浅.

再后来, 我发现, 如果你要问矩阵的本质是什么, 那答案还真就是『矩阵就是一张数表』. 于是当年的那门线性代数在我心中立马从垃圾课程连升三级成为了就开头说了半句人话的垃圾课程.

因为我接下来要传达给你们的观点, 他在课堂上只字未提.


矩阵本质就是一张定义好了加减乘数乘运算的数表, 这里说的矩阵不仅仅是那些方块儿, 还包括那些横着竖着的长条矩阵. 就是被你们称为行向量与列向量的那些东西, 其实是行矩阵与列矩阵.

这一堆规格各异的表格之间能进行极为明确的运算, 这也是让很多人 XJB 学了一学期却完全不知道自己到底在干嘛的东西, 这里不展开讲了. 总之就是, 有了看得见摸得着的形体与运算规律后, 矩阵对我们来说就是一套可靠的数学工具了.

那么接下来的重点就是线性空间与同构映射这俩概念.

懒得看, 你最好是给我长话短说版

总结下来就是, 我们平时研究的事物时常会构成一个线性空间, 然后直接在这个线性空间里运算很不方便, 我们就转之跑到与这个线性空间同构的列矩阵空间里计算. 然后算完了会得到一些数或一些矩阵, 我们再用逆同构映射射回原来的空间里得到相应的数或矢量与算符.

有时候研究的线性空间正好就是现实时空点构成的线性空间, 而这上面的线性变换就是时空操作, 在到列矩阵空间的那个同构映射下时空点对应到列矩阵, 而线性变换会对应到一个方阵[1].

故矩阵只是通过同构映射来帮助研究线性空间的一些定义了加减数乘与乘法的数表罢了, 仅此而已.

而表示可以认为就是将研究的数学对象的集合同态映射到某矩阵集合的过程.


*详细版*

什么是线性空间?

线性空间即对元素定义了矢量加法与数乘两个能满足八条确定运算规律的集合, 而集合中的元素我们称之为矢量. 如果对更详细的定义感兴趣可以参考本回答的附录 A.

举个例子, 你高中做立体几何时接触到的三维欧几里得空间就是线性空间, 原点到空间中每一个点的箭头都构成一个矢量, 于是也可以说这个空间就是由这些箭头构成的. 那理论上你完全可以把这些箭头打包带走拿去研究, 它们已经包含了三维空间的所有信息, 就是说你实际上处理这个三维空间的时候并不需要真的将三维空间画出来, 真正在解题的是纸面上那些矢量的代数式, 这也是我们能在二维的纸上解三维题目的原因, 而这些三维矢量的运算大家都是很清楚的了. 所以完全可以说三维欧几里得空间就是这些三维矢量配合它们的加法与数乘构成的集合.

定义了加法与数乘之后我们可以在线性空间里证明很多有用的结论, 但通常我们还会引入内积这个概念, 因为纯粹的线性空间用途没那么广. 内积本质是一个映射, 定义了内积的线性空间就升格为内积空间. 如果对更详细的定义感兴趣可以参考本回答的附录 B.

比如说三角不等式: 对任意矢量 一定有

证明如下: (你假装看懂就行了, 目的就是表达一下这个过程超妈抽象)

首先需要用的 Schwartz 不等式:

那就要先证明 Schwartz 不等式:

构造 再利用公理 可以得到:



然后利用关系 [2]得到:



, 证毕.

然后要知道对任意复数 恒有 我们得到:





利用 Schwartz 不等式

于是就有

证毕.

好, 那请问我们上面证明的不等式究竟意味着啥?

在三维欧几里得空间下看来我们先证明的所谓 Schwartz 不等式实际上就是

然后的三角不等式其实就是三角形两边之和大于第三边···

Don't say it, I know just how you feel···

为啥这么显然的东西你要搞得这么拧巴? ? ?

难道不是废话吗?
三角形俩边之和大于第三边难道不是废话吗?

但你仔细看, 我前面的证明过程, 哪怕有任何一个等号是通过想当然来得到的吗? 没有, 我可以用脑袋担保整个过程步步有据, 只用到了内积空间的定义与复数的固有性质.

这么做有啥意义呢?

你可以想象三维欧氏空间, 没错, 但你可以想象复数域上的 维内积空间吗?

但无论你多少维度, 只要你满足内积空间的定义, 按照上面的流程走下来, Schwartz 不等式与三角不等式就一定是成立的. 由此我们可以在量子力学中证明坐标与动量的不确定性关系, 严谨, 大方.

或者说, 我完全可以用我自己与我家的猫猫狗狗花花草草和音响组成一个集合, 然后再定义上面的加法, 数乘与内积, 那还真就构成了一个内积空间.

这个内积空间也一定满足 Schwartz 不等式, 但这是废话吗?

我是说你难道会说 很显然吗?

因为我和猫猫的角度的余弦小于等于 ? I mean··· 什么是我和猫猫的角度? 是吧?

但我和猫猫一定满足 Schwartz 不等式, 且很容易证明, 这就是抽象定义的魔力.

于是以后所有满足了线性空间定义的集合就都可以直接用线性空间的结论.

什么是同构映射?

同构映射就是保持了运算性质的一一对应. 两个有运算的集合, 里面的元素如果是一一对应的, 然后元素之间的运算还保持了相同的结构, 那其实在数学上来看, 这俩集合在这组运算下就没有任何区别了. 我们就会称这俩集合在这组运算下同构.

比如说集合 与集合 上面分别定义了封闭的乘法.

一一对应肯定是有的, 我们可以这样对应

即建立一个映射 满足 , 但这还不能说明同构, 因为这俩集合还有一个额外的乘法结构. 如果这个一一对应的映射能办到像下面这样:

使得乘积的映射等于映射的乘积, 那就说明这个 是一个同构映射, 而存在同构映射的集合就同构.

因为能保证运算结果的映射能等于映射后进行相应运算的结果, 所以这俩集合不仅仅只是元素个数相同然后单纯的存在元素的一一对应, 而是整个集合的结构或者说元素之间的关系都完全相同, 所以才将这种情形命名为同构.

比如说 作为基矢张成了一个定义了内积的线性空间, 而 做基矢张成了另一个定义了内积的线性空间. 我们可以建立映射 , 如果这个映射能像下面这样:


满足所有可能的运算关系之间的对应, 那这俩内积空间也就同构了.

同构有啥好处呢?

在数学上, 在某组运算下同构的俩集合其实可以在这组运算下看做同一个数学对象, 因为它们在这组运算下的结构完全一样.

那么重点就来了

生产生活中, 我们其实并不会直接用到矩阵对吧?

但在生产生活中我们要碰到很多能相互作用的事物, 而有时候这些事物的集合与相互作用的形式都会正好满足线性空间的定义, 比如说在力学中力这个概念就满足线性空间的定义, 在立体几何中那些向量箭头就满足线性空间的定义, 在量子力学中态空间正好满足线性空间的定义, 在计算机学科中, 在比如说设计领域或者金融领域里之类的··· 反正只要提到了矢量或者向量或者矩阵之类的字眼时, 就一定有个啥构成了线性空间.

然后呢? 构成了线性空间之后, 空间内的东西就获得了一个新的名称 -- 矢量.

但这些矢量就像猫猫狗狗花花草草一样, 虽然可以定义明确的运算, 但也很难运算.

你看我前面废了老劲儿地证明 Schwartz 不等式与三角不等式的过程应该就体会到这一点了.

接着我们就发明了这样一些数表, 赋予了它们明确的加减乘与数乘等运算, 然后我们称之为矩阵.

然后你会发现所有同型号的列矩阵在矩阵的运算下正好能满足定义构成一个线性空间甚至内积空间. 再然后呢? 你也应该猜到了吧?

再然后就是同构:

对于一个内积空间, 内部矢量有了正交的概念, 我们可以选出一组正交基矢 来将空间内的任何一个矢量表达出来.

然后你会发现列矩阵 张成的的空间正好和上面那个空间同构.

也就是存在同构映射

然后所有的原内积空间中的运算就都归结为列矩阵之间的运算了.

而矩阵的运算就是你们 XJB 学了一学期的内玩意儿, 是十分清晰的, 也很适合教给计算机.

那矩阵是啥?

方阵右乘列矩阵会得到另一个列矩阵, 所以方阵是列矩阵到列矩阵的映射.

而在线性空间中有线性变换这么一个概念, 指的是将空间中的一个矢量映射到另一个矢量的过程.

而矢量在同构映射下得到列矩阵, 所以能将列矩阵映射到列矩阵的方阵同构逆同构映射回到原来的内积空间时会对应到空间中的一个线性变换. 这就是为啥有人会说矩阵就是线性变换, 但现在看来这个说法还是不够准确吧?

所以为啥矩阵的乘法要这么别扭?

答案或许是为了能与线性空间的运算构成同构关系.

回到梦开始的地方

如果你研究的空间正好是四维时空, 那么四维时空中的时空点作为矢量就构成一个线性空间, 而这个线性空间中的线性变换, 确实可以说是时空的一个旋转拉伸啥的, 也就是一个时空操作.

然后这个线性空间会与一个列矩阵空间同构, 这样这个时空操作在同构映射下会对应到一个矩阵.

但你说矩阵是啥?

矩阵是时空操作吗? 不对吧··· 矩阵本质上来说就只是一张定义了明确的加减数乘与乘法的数表罢了.


啥是表示呢?

表示你可以认为是一个同态映射的过程.

所谓同态映射就是没那么严格的同构映射,
同构映射是保持了运算关系或者说集合结构的一一对应,
那么同态映射就是保持了运算关系或者说集合结构的多一对应.

在数学中时常会定义一些有明确运算关系的抽象符号构成的集合, 比如说群或者什么什么代数. 它们满足的运算关系是十分明确的, 但很抽象, 因为这些符号的本体看不见摸不着.

如果我们能找到一组矩阵构成的集合与上面那些抽象符号构成的集合正好同态, 那这组矩阵在相应的同态映射下就被称为这些抽象符号的表示矩阵. 而这个同态映射的过程就是一个表示过程, 如果同态映射升格到同构映射这就是所谓的忠实表示, 因为同构了, 它们在数学意义上是一回事了, 也就没有信息丢失, 所以曰之忠实.

总而言之这样将一组抽象的数学对象对应到矩阵的过程就是一个表示.

而这里的表示矩阵所作用到的列矩阵们构成的线性空间就被称为表示空间.

所以很多时候, 也有人老喜欢说出『群就是矩阵构成的集合』,『代数就是矩阵构成的集合』这样让人听着浑身难受的说法. 这些说法就和说『线性变换就是矩阵』一样是很恶心人的.

确实, 在同构映射下或者忠实表示下, 这些矩阵和你研究的数学对象完全等价.

所以你就可以不区分两者了吗?

你将群定义为它的其中一个忠实表示, 那群元岂不是平白无故地就多出了加法与数乘?

所以说不需要的信息就全砍掉, 抽象符号的定义就是最简洁的也是最美的.

但是很遗憾, 为了让新手尤其是物理人新手能舒服一点儿, 我的群论 notes 也还是采取了所谓的定义表示与矩阵李群的概念··· 其实最优美的做法还是从具有群结构的流形出发, 但写那种东西, 在一般通过的物理人看来你只是在自嗨罢了.

Sigh··· 形式、美与正义总是要付出代价的.


附录

A. 线性空间:

✦ 线性空间 即对元素定义了[3]矢量加法 与数乘 两个能满足八条确定运算规律的集合, 而集合中的元素我们称之为矢量.

上述中的 是数域, 参与数乘的数就属于数域, 可以是实数域 或复数域 等[4].
要注意到顺序是这样的:
┣ 我们是先给定了一个数域 ,
┣ 然后才给定一个集合 ,
┣ 集合 内定义一个 的二元运算, 称之为矢量加法,
┗ 然后定义一个 的数乘运算将 与 耦合起来.
所以谈线性空间的时候要指出是什么域上的线性空间.

✦ 矢量加法 与数乘 需要满足的八条运算规律:

下面对 均成立.

(1). 矢量加法的交换律: .
(2). 矢量加法的结合律: .
(3). 存在零元, 即矢量加法的单位元 使得 .
(4). 存在矢量加法的逆元 使得 .
(5). 存在数乘的单位元 使得 .
(6). 数乘与数域乘法相容: .
(7). 数乘对数域加法的分配律: .
(8). 数乘对矢量加法的分配律: .

注意数乘是不要求交换律的, 然后就是数域自带了正常的乘法和加法, 就是小时候玩的那种.

✦ 举一例加深理解[5]:

在 上定义运算 .

若将 定义为矢量的加法, 而将 定义为数乘的话 就构成 上的线性空间.

✦ 最后, 由于矢量加法与数乘的运算与数域加法乘法相容, 就没必要特意创造新符号了.

就是说我们将用 与 来代替 与 , 这并不会造成任何混乱.


B. 内积空间:

✦ 内积空间就是定义了内积运算的线性空间, 内积本质是一个映射 .

即对 有 . 而这个映射是人为指定[6]的, 并没有什么玄妙的地方.

然后就是上述映射要满足以下四个条件才能被称作内积运算:

(1).[7].
(2)..
(3)..
(4)..

✦ 内积空间中对 我们一般定义矢量 的模长 .

有了内积就可以定义标准正交基为两两内积为 且模长均为 的矢量构成的一组基底.

参考

  1. ^ 更严谨来说空间点到列矩阵的同构映射与线性变换到方阵的同构映射不是同一个映射, 因为定义域不同, 不过不分那么细也没啥.
  2. ^ 注意这里不允许等于 0, 自己想想吧, 不解释了.
  3. ^ 我之所以不用普通的加号和乘号就是为了让大家意识到, 这里说的加法和乘法与数域中的相应概念不完全是一回事. 只要是能满足下面的八条运算规则的就都有资格充当这俩运算. 当然日常生活中不会这么写, 这是因为下面八条运算规律让数域上的加法与乘法和矢量加法与数乘相容了.
  4. ^ 呃··· 与其说可以是不如说只能是, 物理人难道还真的用得到这俩之外的域吗?
  5. ^ 如果你能证明下面说法, 你应该就算很懂线性空间是怎么一回事了.
  6. ^ 只需要指定基矢之间的映射效果就好了.
  7. ^ 右上角星号表示取复共轭.

user avatar   tommaxmim-18 网友的相关建议: 
      

矩阵是一个模拟工具,

把某个目标世界或对象用矩阵的方式而实现数字化转译,

然后将一些规律或者关系用数学方法映射,

最后两者接合,用以记录或者模拟目标世界的规律或者关系的某个结果,以及中间涉及到的过程。

矩阵的基础是正交化,

基于正交化可以简单的进行降维和升维,

以及对某个点进行N次叠加,

这导致矩阵这个工具有着很好的竞争力。


user avatar   metanb 网友的相关建议: 
      

凡各种人狗冲突中,没听说过狗主一方自杀的。罕见人的一方狗主一方的人用各种暴力的。

狗主和拜狗者一方抱团人肉他人,骚扰他人,辱骂他人,围攻他人,殴打他人,逼人退学,辞职,社死,倒是常有,很多,很多。

对了,最近还在大肆炒作所谓"反虐待动物法"。看了下这个"法"的某个所谓专家建议稿,其中称:

是的,你没看错,在散放猫狗的惩罚是"警告"或者"责令改正"起步,被猫狗咬伤需要自己幸苦追索赔偿,也只能赔偿有票据的医药费交通费等有限金额的现如今,

有些人正在试图立法,假如你胆敢屠宰猫狗或者运输猫狗肉(周全地卡死了网购猫狗肉的可能),不但要重罚你,还要你"具结悔过"。

所以,姑娘,别这么傻。

”让他们良心上过不去“这种试图以自己的生命换取对方良心发现的做法,对拜狗者群体,是没有用的。下次记得,反正命都不要了,伸张正义先。


user avatar   yang-fan-gao-kao-zhi-yuan-tian-bao 网友的相关建议: 
      

就是故意的,今天很生气写了一些话,还涉及到其他事件,一并贴在这里吧。

从清华美院到陈漫到雄狮少年再到三只松鼠,殖人在试图强奸我们的审美和思想。

他们不仅迎合西方人对华人的刻板歧视形象,还要逼着国人接受,不接受就是自卑就是文化不自信。不仅如此,他们还要把好看的特征归给白人,我看过不少街坊,地球人的审美都是大差不差的,大眼睛高鼻梁是共同的好看认知。

他们会说“难道眯眯眼就不能做中国人了吗?李荣浩黄渤孙红雷小眼睛就是辱华了?”抱歉小眼睛≠眯眯眼≠眯缝眼,而且从来也没有人说过这些男明星很丑长得辱华吧?中国人也喜欢丹凤眼,丹凤眼也是细长眼角略微上吊的,和夸张的倾斜成45度角眯缝眼完全不一样!

他们会拿着古话洗地,说“朱元璋知道他辱华了吗?”请问朱元璋眼距宽得能再放三只眼睛吗?朱元璋的眼睛斜成45度角了吗?不知道是单纯还是真蠢,可能就是又蠢又坏吧。 古代仕女图可能并不符合所有人的审美,但并不会让人感到不适。这是百度的几张仕女图,人物是协调的令看客舒适的。



放一张朱元璋,看着也是个正常长相的老人。

这些画和迎合西方歧视印象而化的妆根本不一样,不要再偷换概念了!




关于雄狮少年,刺客伍六七大理寺日志都有小眼睛人物,但是从来没有人骂过他们的形象辱华。为什么不从自身找原因呢,合着都是观众的错,作品是给人看的,观众有权表达自己的想法。

陈拾就很可爱

说实在点,现实生活中真没看过这样长相的人,更像是二十一三体综合征患者

唐氏综合征示例卡通图眼睛甚至要比雄狮少年人物大一点。

没有歧视唐氏综合征患者的意思,他们是可怜的病人,我只是觉得一个病人的形象不该代表中国人。该片已经在法国得奖了,我可没有冤枉他,的的确确是说了代表东方人物。水军也不要拿日本人也不长日漫那样,动画夸张一点很正常又不是说中国人就长这样来洗地了。

曾经看到过b站up主一对中外情侣做的有关哪些是歧视性的动作和语言,眯缝眼加怪异的吊梢眼是全球都知道的辱华形象。

这里贴一个链接:【最常见的用来歧视中国人的言论。居然还有中国人帮外国人洗白辩解,你们真的知道它们的历史背景吗?-哔哩哔哩】 b23.tv/YIOXqjq

从杜嘉班纳到今天的三只松鼠事件,洗地 越来越多了,他们在慢慢逼着中国人承认并接受,如果我们不抵制的话他们会变本加厉,在各个领域喂 国土被殖民了,英勇的先辈抛头颅洒热血抗争到底才赢得了胜利,才换来了今天和平的生活,21世纪高傲的白人又想精神殖民 有些人不仅自己被精神殖民了还要洗脑普罗大众,实在令人作呕!贴一个微博看到的评论,侵删。




  

相关话题

  如果把行列式定义中的(-1)^(逆序数)去掉,这种新的运算能用在哪里呢? 
  如何理解矩阵的复数特征值和特征向量? 
  怎么形象地理解对偶空间(Dual Vector Space)? 
  哪个整系数多项式方程的根是 √2 + √3 + √5,如何得到这个方程? 
  如图,这道题中的隐函数为什么可以设y=tx? 
  为何可逆上三角形矩阵的逆矩阵也是上三角形矩阵? 
  如何理解矩阵对矩阵求导? 
  这道线代题该怎么做? 
  n阶实方阵矩阵的换位子问题? 
  所有的n阶反对称矩阵可以构成一个线性空间吗? 

前一个讨论
华为手机耳机伴奏音很大,人声很小,校内手机店的人说是尾插坏了,需要更换,更换尾插对手机有影响吗?
下一个讨论
你都私藏了哪些牛逼的命令行?





© 2024-12-26 - tinynew.org. All Rights Reserved.
© 2024-12-26 - tinynew.org. 保留所有权利