问题

如何通俗地理解 2020 年诺贝尔生理学或医学奖,丙肝病毒的发现意义有多重大?

回答
2020年的诺贝尔生理学或医学奖,颁给了三位杰出的科学家:Harvey J. Alter、Michael Houghton 和 Charles M. Rice,以表彰他们在发现丙型肝炎病毒(HCV)方面所做的开创性工作。这项发现的重要性,就好比是在一场漫长而痛苦的斗争中,终于找到了敌人隐藏的身份,从而为最终的胜利奠定了基础。

在他们之前,人们对“非甲非乙性肝炎”非常困惑。简单来说,医生们发现有些人得了肝炎,但这种肝炎既不是由甲型肝炎病毒(HAV)引起的,也不是由乙型肝炎病毒(HBV)引起的。这就像是,在知道感冒是病毒引起的之后,又出现了一种新的“咳嗽发烧”,但却找不到是什么“病原体”在作怪。当时,很多人认为这是一种“不明原因”的肝病,甚至有人怀疑是不是环境因素或者不健康的饮食习惯导致的。这种不确定性,给诊断和治疗带来了极大的障碍。

Harvey J. Alter的研究,可以说是开启了寻找“那个看不见的敌人”的第一步。他在治疗血友病患者时,注意到一些接受输血的患者,即使没有甲肝或乙肝的症状,也会出现肝功能异常。他大胆推测,一定存在一种新的、未知的病毒,通过血液传播,导致了这种肝脏的损伤。他通过动物实验,成功地将这种“传染性因子”从人类血液转移到了黑猩猩身上,证明了确实存在一种病原体在起作用。

紧接着,Michael Houghton 加入了这场“寻毒”的战斗。他的工作更像是那个细致入微的侦探,要从大量的血液样本中,把那个隐藏的凶手揪出来。他采用了一种革命性的方法,叫做“基因克隆”,来对抗那个未知的病毒。他首先从感染的黑猩猩体内提取病毒颗粒,然后尝试从中分离出病毒的遗传物质(RNA)。这过程非常艰难,因为病毒的数量可能很少,而且不容易被分离出来。经过无数次的尝试和失败,他终于成功地克隆出了一种新的RNA病毒,并将其命名为“C型肝炎病毒”(HCV)。这一发现,就像是侦探终于找到了罪犯的DNA指纹,为后续的研究打开了关键的大门。

然而,光知道有这么一个病毒还不够,还需要证明它真的是导致丙型肝炎的“元凶”。Charles M. Rice 的工作,就像是那个严谨的法医,要用科学的证据来确凿地证明“凶手”的身份。他进一步深入研究,利用基因工程技术,成功地复制了HCV的基因组,并且能够让这个病毒在实验室中繁殖。更重要的是,他证明了HCV的某个特定部分(NS5A蛋白)是病毒复制所必需的。他还通过动物模型,证明了HCV确实能够引起肝脏疾病。他的研究,可以说是为“罪犯”的行为动机和作案方式提供了无可辩驳的证据。

这三位科学家的工作,层层递进,最终成功地锁定了丙型肝炎病毒。这项发现的意义,用“划时代”来形容一点都不为过。

首先,它终结了“不明原因肝炎”的时代。从科学的层面来说,这就像是疾病领域的一场“拨乱反正”,消除了很多误解和猜测,让研究人员和医生们有了明确的研究目标和诊断依据。之前那些不明不白的肝炎患者,终于找到了病因,也为他们的治疗指明了方向。

其次,它为丙肝的诊断和治疗铺平了道路。一旦知道了病毒的身份,科学家们就可以开发出针对性的诊断方法,比如血液检测,来准确地判断一个人是否感染了HCV。更重要的是,了解了病毒的结构和复制机制,为后续研发抗病毒药物提供了基础。在他们发现HCV之后,经过几十年的不懈努力,科学家们终于研发出了能够治愈丙型肝炎的特效药物。在过去,丙肝是一种慢性、难以治愈的疾病,可能导致肝硬化、肝衰竭甚至肝癌。而现在,通过口服药物,大多数患者都能在几个月内被治愈。这简直是医学史上的奇迹。

想象一下,在发现HCV之前,医生们面对丙肝患者,可能只能给予一些支持性的治疗,效果有限,甚至有些患者只能眼睁睁地看着病情恶化。而现在,医生们可以开出药物,让患者摆脱疾病的困扰,恢复健康。这份喜悦,是任何语言都难以形容的。

最后,这项发现也对病毒学研究产生了深远的影响。寻找和鉴定新的病毒,特别是那些难以培养的病毒,本身就是一项极具挑战性的工作。Houghton等人开发的基因克隆技术,为后续发现其他重要病毒,比如埃博拉病毒、SARS病毒等,提供了重要的技术支持和思路。这就像是开启了一扇新的大门,让病毒学家能够更有效地探索病毒世界的奥秘。

总而言之,2020年诺贝尔奖授予 Harvey J. Alter、Michael Houghton 和 Charles M. Rice,是对他们几十年如一日的执着研究和重大贡献的最高肯定。他们不仅揭开了丙型肝炎病毒的神秘面纱,更是为攻克这一曾经棘手的疾病提供了决定性的武器,拯救了无数人的生命,也极大地推动了人类对病毒性疾病的认识和防治能力。这项发现的意义,是实实在在的,它改变了无数患者的命运,也为全球公共卫生事业做出了不可磨灭的贡献。

网友意见

user avatar

谢邀。

如果大家有过住院、手术或者输血的经历,可能就会知道一项叫做「术前免疫八项」的常规化验。这个化验的目的是为了筛查一些常见的血源性传染病,其中包括乙肝五项(两对半)、梅毒螺旋体抗体、艾滋病病毒抗体,还有最后一项就是丙肝病毒抗体。

之所以这么重视丙肝,是因为它是人类发现的最常见的经血液(输血)传播的疾病之一。由于曾在输血人群中大量感染,它一度被叫做「输血性肝炎」。在它未被确定病原体的时候,由于这种不明原因的肝炎太多,也曾被叫做「非甲非乙型肝炎」,直到这次获得了诺贝尔生理学或医学奖的三位科学家——Harvey J. Alter,Michael Houghton和Charles M. Rice——通过分子生物学方法,终于找到了病毒的基因序列,克隆出了丙肝病毒,「非甲非乙型肝炎」及其病毒才被命名为丙型肝炎 (Hepatitis C)和丙型肝炎病毒(HCV)。由于HCV基因组在结构和表型特征上与人类的黄病毒相类似,将其归为黄病毒科。

其实人类对病毒性肝炎的认识过程是一个很有意思的故事,今天毛大夫就在这里跟大家简单说一说。这个过程始于人类对一种很常见的「疾病」(如今更合适的称呼是一种「症状」)的好奇心——这种症状就是「黄疸」。

所谓「黄疸」,就是指病人全身变黄的现象——从巩膜到皮肤再到口唇粘膜。我国传统医学对于黄疸的认识,早在2000多年的《黄帝内经》里即有“湿热相交,民病瘅也”“溺黄,赤安卧者,黄疸,目黄者,日黄疸”描述。东汉张仲景的《伤寒论》《金匮要略》指出:“伤寒七八日,身黄如桔子色”。其后,宋、清两代《伤寒微旨论》及《杂病源流犀烛》又相继提出:“阴黄证治”及“又有天行疫病,以致发黄者,俗谓之瘟黄,杀人最急”。由此可见,古人无论对于该类疾病的症状及传染性都有了一定程度的了解。

西方传统医学对于该病记载可追溯到公元前。起初,多见的黄疸表现,人们会简单认为它只是局限于胆管的卡他性炎症。因此,古希腊、古罗马将之描述为“卡他性黄疸”。随后,在19世纪初,美国的南北战争中第一次记载了军队中的黄疸病流行,随即被称为“军营黄疸”。并发现秋冬季是黄疸病流行的高峰。

1912年,美国医生柯凯因(Cockayne)对发生的22569例“卡他性黄疸”进行了统计学分析与研究,其中有161例死亡病人,病死率接近百分之一。这个数字令他感到非常震撼,也促使他随后对该病进行更深入的研究,从上万份病例的病程描述中,他发现卡他性黄疸是一种全身性疾病,且具备传染性,严重患者可导致急性衰竭导致死亡。柯凯因医生第一次把该类疾病称为「流行性黄疸」。

自从人们认识到这种疾病的传染性后,逐渐发现它的爆发和流行多见于人口密度大、卫生条件差的人群中,它是如何传播?成了研究人员下一个关注的问题,柯凯因医生详细观察了一位病人肝炎的传播过程。这例病人在患病期间外出旅游,把疾病传染给了在外地曾有过密切接触的三个人。因此柯凯因医生推断,该病是由于人与人接触而传播的。但在当时,更多医生倾向于这种疾病是通过呼吸道传播的。

1942年,有一位叫维奥特(Voegt)的医生用肝炎病人的肠道分泌物感染了其他人,证实了该病的消化道传播途径。差不多在同一时间,一位叫做麦凯阿伦(MacCallum)的英国军医发现许多接种了黄热病疫苗的士兵在几个月后出现肝炎症状。黄热病疫苗中含有人血清,于是,麦凯阿伦医生开始考虑是否在人的血液中带有引起肝炎的病原体。他将由被粪便污染的食物和水经消化道传播引起的肝炎称为传染性黄疸(即后来的「甲型肝炎」),由污染血液经输血传播引起的肝炎称为血清性黄疸(即后来的「乙型肝炎」)。

到了20世纪60年代中期,一个名叫布鲁伯格(Blumberg)的生化专家试图发现为什么某些人种更容易得某些疾病,他猜测这些人种带有独特的致使他们得病的蛋白。他从经常输血的人中搜索这些抗体,因为这些人在输血时接触到自身先前没有的蛋白,从而产生抗体。布鲁伯格搜集了大量全世界不同人种的血液,并设计了一种方法来显示人的免疫抗体认出一种陌生蛋白后所产生一种复合物。与此同时,另一位美国疾病预防控制中心的血液专家阿尔特关注着一个和麦凯阿伦相类似的问题:为什么很多需要经常输血的血友病和白血病病人出现肝炎症状。他怀疑这些患者因输血而得肝炎。

阿尔特决定和布鲁伯格携手。他们的第一个重要发现是在澳大利亚土著人的血清中发现一种能够和一个白血病患者的血清产生抗体—抗原反应的神秘的蛋白。他们将之命名为澳大利亚抗原(Aa)。Aa就是我们现在常规乙肝检测“两对半”中的表面抗原HBsAg。自此对乙肝的研究便「势如破竹」,乙肝病毒、乙肝疫苗以及抑制乙肝病毒的药物相继被发现。

乙肝病毒表面抗原的发现震惊了当时的医生们。他们认识到,必须采用适当的方法对已被乙肝病毒污染的血液进行筛查,以此减少输血后肝炎的发生。但是即使经过严格的血液筛查,仍有许多病人染上了输血后肝炎。科学家怀疑还有其他种类的肝炎病毒经血液传播。于是他们试图「故伎重演」,用搜寻乙肝的「抗体—抗原方法」来查获这种病毒。但是曾被称为「非甲非乙型肝炎」病毒(丙肝病毒)似乎非常不稳定并难以捉摸。现在我们知道,这是因为丙肝病毒不同于乙肝病毒,属于RNA病毒,善于变异,所以很容易避开人体的免疫反应。

直到1989年,这次获得诺贝尔奖的三位科学家——Harvey J. Alter,Michael Houghton和Charles M. Rice——克隆出丙型肝炎病毒基因,并证实80%至90%的「非甲非乙型肝炎」是由丙型肝炎病毒造成的。从1990年开始,随着高敏感性、高效性的丙肝病毒血液检查方法的应用,输血引起的肝炎已下降到十万分之一。

阻断丙肝在输血人群中的传播只是第一步,更进一步的需求是治疗已经感染丙肝的患者和保护没有被感染的人群。

由于HCV病毒的多变性,目前对丙肝尚无有效的疫苗,但得益于另一个「抗病毒神器」——干扰素的诞生,人类对于丙肝的治疗可以达到较高的成功率,但干扰素的副作用比较大,依然有着不可忽视的无效人群。

随着医学的进步,现在的丙肝治疗已经到达了精准医学的阶段——根据丙肝患者所感染病毒的具体类型,通过特定药物给予的直接抗病毒方案(DAA)。药物DAA的引入,彻底改变了HCV感染的治疗方法。如今,高效,耐受性良好的全口服方案已成为绝大多数可使用这些药物的HCV感染患者的治疗选择。

2017年来,中国大陆陆续批准了多个DAA治疗慢性丙型肝炎(慢丙肝)的方案(索磷布韦、达塞布韦联合奥比帕利、达拉他韦联合阿舒瑞韦以及西美瑞韦),中国慢丙肝的治疗正式步入DAA时代。

目前,我们对于慢性丙型肝炎病毒(HCV)患者的抗病毒治疗目标是根除HCV RNA,这是通过获得持续的病毒学应答(SVR)来预测的,SVR定义为完成后12周未检测到RNA水平治疗。

在长期随访中,一些成熟的DAA方案SVR与HCV RNA阴性的可能性为97%至100%,因此可以视为治愈HCV感染的方法。


不靠电线杆上的偏方,不靠各种祖传的、神奇的「秘方」和草药,经过近百年的认识的发展,人类通过现在现代生物科学手段一步一步地「攻克」了丙肝。不仅治愈了成千上万的丙肝患者,更是预防和挽救了大量潜在的肝癌人群。

而开启了这段近百年路途中最重要一步的,就是这次获得了诺贝尔奖的三位科学家——Harvey J. Alter,Michael Houghton和Charles M. Rice,所以他们的获奖可谓当之无愧。现代科学给医学带来的进步,以及科学进步带来的人道主义,也就体现在了这里。

user avatar

作为一位研究肝炎和肝癌的研究生,很兴奋看到今年诺奖颁发给相关领域呢~借此还原一段辛酸的丙肝病毒发现史。

三个人的研究各有侧重:Alter是输血部门而非病毒学家,输血引发肝炎使他成为最早提出存在丙肝病原体的人;Michael Houghton历时七年鉴定分离出丙肝病毒,并且发明出高效的病毒诊断方法;Rice作为传染病学家研究丙肝病毒如何感染、与宿主作用,并成功在小鼠模型中还原出丙肝病毒的完整生命周期。

病毒性肝炎是最常见的传染病之一。一共有五种肝炎病毒,以字母A、B、C、D和E来命名。常见的HAV,HBV,HCV就是我们熟悉的甲乙丙三种病毒类型。

甲型肝炎通常是由于与他人密切接触或受污染的食物或饮料意外摄入排泄物而引起的,有疫苗,急性感染,患者人数较少。乙型肝炎在亚洲和非洲常见,通常是由感染的血液,母婴垂直传播或无保护的性行为引起的,有疫苗,慢性感染。丙型肝炎病毒只通过血液传播,没有疫苗,感染人数最多,约有一半的丙型肝炎病毒感染者不知道自己被感染了,丙肝有长达十几年的无症状潜伏期。

约有5亿人慢性感染HBV或HCV,还有数百万人处于危险之中。每年有100万人死于病毒性肝炎感染及其并发症。乙型和丙型肝炎病毒感染都有可能最终形成肝癌。


背景知识补充完毕!下面开始发现之旅吧!

病毒性肝炎以前被称为流行性黄疸,自古代文明以来就已知存在。早在公元8世纪,人们就怀疑这种疾病的传染性。根据18世纪到20世纪在不同大陆的主要军事行动的记录,包括美国内战和两次世界大战,都报告战役黄疸造成了军队的严重发病率和战争策略的影响。

19世纪末流行病学的观察和研究,包括20世纪的人体实验(惨无人道:将受感染的粪便、尿液和血清喂养和注射给志愿军人、囚犯和智障儿童的实验)。逐步识别了一个明显的肝炎传播路径:

1)排泄物传播,后来被称为甲型肝炎病毒(HAV);

2)通过接种或输血、血液或血浆或性接触的血清肝炎。

20世纪60年代,乙型肝炎病毒(HBV)才被发现,它是血清肝炎的病原体之一。

同是血清肝炎的病原体,丙肝的发现则更迟。

在20世纪70年代中期,我们的主角之一Alter,作为输血医学部的主任,他和研究团队发现大多数输血后的肝炎病例不是由甲型肝炎和乙型肝炎病毒引起的。

为了再次证明,他将非A、非B型输血后肝炎患者血清接种到5只黑猩猩中,黑猩猩的谷丙转氨酶升高了,说明产生了肝炎,但是依然没有A型或B型肝炎的血清反应。于是起名废Alter将此类肝炎命名为非A非B肝炎(NANBH)(那时候还不知道病原体是一种病毒哦)[1]。该成果发表在1978年的柳叶刀。

接下来的13年令人沮丧的时间里,能识别HAV和HBV的方法都未能对NANBH的病因进行鉴定。但经过对黑猩猩感染的进一步研究他们发现NANB型肝炎的病原似乎是小的、脂包膜、可通过血液传播,并且是大多数输血相关性肝炎病例的原因。(咦,这不就是病毒的特征嘛??)

时代的车轮滚滚向前,20世纪70年代末单特异性抗血清免疫筛选表达质粒cDNA文库分离cDNA克隆的方法诞生了,lambda-gt11等噬菌体表达载体的开发使大规模基因cDNA文库筛选成为可能。1985年免疫荧光技术得到了极大的发展,这增强了NANBH抗原筛选的敏感性。除此之外,采用细菌而非细胞来获得更高NANB抗原产量。

三大技术加持,数个实验室奋斗在寻找病原体的前线。最终Michael Houghton脱颖而出。

Michael Houghton研究小组从感染的黑猩猩提取总RNA和DNA构建文库。从含有未鉴定的非A、非b型肝炎(NANBH)制剂的血浆中构建了一个随机引物互补DNA文库,并与诊断为NANBH患者的血清进行了筛选。在近6年不断的失败之后,他们最终从数亿个细菌cDNA克隆确定了丙型肝炎病毒。该序列并非来自宿主DNA,而是来自一种RNA分子。这篇研究发表在1989年的《science》上[2]

同年,非a、非b病毒被重新命名为丙型肝炎病毒,又是一篇《NEJM》呢[3]1991年,丙肝病毒9379个基因组被确定,比较特别的是,不同的HCV分离株有相当大的基因组多样性,至少鉴定出6种主要基因型和数百种不同亚型[4]

与此同时大量病毒学和免疫学研究开始进行,研究主要重点是确定了NANB病毒感染的临床后果。这些研究表明对抗丙型肝炎病毒(HCV)的中和抗体具有非常强的应变特异性,而且在大多数情况下,无法防止导致持续感染的病毒变异的出现[5]。对患者进行长期监测发现约20%的丙型肝炎病毒感染的患者会自行痊愈,约20%的丙肝病毒感染可能最终导致肝硬化,并伴有肝细胞癌相关风险。

丙型肝炎的发现促使诊断试剂的迅速发展。

检测血液供体中的丙型肝炎病毒,从而将通过输血获得丙型肝炎病毒的风险从三分之一降低到约200万分之一。

从1978年到1988年的十年间, Houghton等人尝试了各种血清方法来进行测试。尽管使用了高度纯种的感染标本、推定的恢复期血清、洗脱组分、纯化的丙种球蛋白和最敏感的放射免疫分析方法,仍不能为这种难以捉摸的病原体开发一种特异性的血清学试验。

Houghton对来自不同地理来源的样本进行的丙型肝炎病毒5'-非转录区域的核酸序列检测发现,所有分离株的核酸保守性均超过98%。在此基础上,通过逆转录酶和聚合酶链式反应(PCR)的cDNA合成,建立了一种病毒RNA检测方法[6]

1990年,HCV供体筛选正式开始。Alter建立了一项新的前瞻性研究来衡量这种检测的效果。第一代试验对丙肝病毒抗体导致肝炎发病率从70%降低到1.5%,更加精准的第二代试验在1992年,几乎消除了丙肝病毒传播。供体的病毒核酸检测和改进的病毒灭活技术将很快使肝炎的传播从接近零降到绝对零。

抗病毒治疗仅部分有效,并且不存在疫苗。Michael Houghton近年的研究工作集中在HCV疫苗的开发上。缺乏合适的小动物模型阻碍了更有效疗法的发展。

Charles M. Rice团队作为一个病毒学和传染病实验室,他们感兴趣的是了解病毒如何传播。

它们与宿主细胞相互作用的方式,以及它们如何导致疾病。他的团队开发新的体外培养和动物模型来促进这项工作。

Rice开创了生长和研究丙型肝炎病毒(HCV)的新方法,其中包括一种拥有人类肝脏的小鼠[7],这使丙型肝炎病毒复制的首次研究和在小动物模型上测试候选药物成为可能。Rice s研究组建立了第一个HCV感染的免疫活性小鼠模型,2013年《nature》论文中,Rice第一次在小鼠中重述丙肝病毒的整个生命周期。为HCV相关肝癌疫苗的研制和治疗研究铺平了道路[8]

从20世纪60年代至今,人们对丙型肝炎的认识逐步加深,离不开数这三位科学家和更多没有在大众面前显示出名字的科学家的贡献,发现病毒,了解病毒,攻克病毒三部曲尚未走完,我们这代年轻人更要好好努力啊。

感谢观看。本文主干来自于Alter和Houghton2000年共同撰写的综述,全面讲述了30年的病毒发现历程[9]

参考

  1. ^ https://doi.org/10.1016/s0140-6736(78)90131-9
  2. ^ https://doi.org/10.1126/science.2496467
  3. ^ https://doi.org/10.1056/nejm198911303212202
  4. ^ https://doi.org/10.1073/pnas.88.6.2451
  5. ^ https://doi.org/10.1002/hep.1840120409
  6. ^ https://doi.org/10.1128/jcm.29.11.2528-2534.1991
  7. ^ https://doi.org/10.1038/nature10168
  8. ^ http://www.nature.com/doifinder/10.1038/nature12427
  9. ^ https://doi.org/10.1038/80394
user avatar

恭喜Harvey J. Alter, Michael Houghton and Charles M. Rice 获得2020年诺贝尔生理学或医学奖。

获奖理由:

“for the discovery of Hepatitis C virus.”

丙型肝炎病毒(hepatitisCvirus,HCV)!!!

说到肝炎,大家往往想到的是乙肝,其实丙肝也是一种重要的肝炎,危害程度甚至毫不逊色。

这是常见的三种肝炎病毒,其中乙肝(B)和丙肝(C)是可以通过血液传播的

丙型肝炎是慢性肝炎的主要致病因子,全世界的慢性肝病中,有40%-60%左右的人是由丙型肝炎导致的,而这些慢性肝炎,如果无法得到及时治疗,就会进一步发展为肝纤维化和肝硬化,最后发展成为肝癌。

那么这三位诺奖得主做出了什么贡献呢?

一图流:

Harvey J. Alter:发现丙肝

Michael Houghton:确定病毒基因组

Charles M. Rice:证实丙肝病毒可以引起肝炎。

分别介绍

————Harvey J. Alter:发现丙肝————

成功干预传染病的关键是确定病原体。

1960年,巴鲁克·布伦伯格(Baruch Blumberg)首次发现乙肝,为肝炎的发展提供了新的思路,病被授予了1976年诺贝尔生理学或医学奖。

而这个时候,美国国立卫生研究院的Harvey J. Alter发现了一些里外的情况,那就是,即使是没有乙肝,依然有大量的病人会感染肝炎,而这些肝炎并不是甲肝和乙肝。

更为麻烦的是,这些人频繁发生在输血中,大量输血者由于未知的传染原而患上了慢性肝炎。 Alter和他的同事表明,这些肝炎患者的血液可以将疾病传播给黑猩猩,这是人类之外唯一的易感宿主。进一步研究,将这种未知的传染源和病毒联系在一起。

于是Alter定义了一种新型的、独特的慢性病毒性肝炎,称之为丙肝。

Harvey J. Alter于1935年出生于纽约。在罗切斯特大学医学院获得医学学位,并在斯特朗纪念医院和西雅图大学医院接受内科医学培训。 1961年加入国立卫生研究院(NIH),担任临床助理。他在乔治敦大学(Georgetown University)工作了数年,然后于1969年返回国立卫生研究院(NIH),担任临床中心输血医学系的高级研究员。

————Michael Houghton:确定病毒基因组————

了解病毒,现代科学下,必然是:测个序,就像大家研究新冠病毒一样。

而丙肝病毒的基因数则是由Chiron制药公司工作的Michael Houghton完成。

首先,霍顿和他的同事们从感染黑猩猩血液中发现的核酸中提取了DNA片段。

尽管当时大部分序列是来自黑猩猩基因组(很正常),不过有一些片段是来自未知病毒,进一步,他们对病毒进行了研究,尤其是从患者血液中获得病毒抗体来鉴定编码病毒抗原的DNA片段,最后,找到了病毒序列。

来自Flavivirus family的新型RNA病毒,也就是丙肝病毒。

迈克尔·霍顿(Michael Houghton)出生于英国。于1977年在伦敦国王学院获得博士学位。1982年加入GD Searle&Company,之后于1982年移居加利福尼亚州埃默里维尔的Chiron公司。他于2010年移居艾伯塔大学,目前是加拿大杰出病毒学研究主席和李嘉诚病毒学教授,在艾伯塔大学任教。他还是李嘉诚应用病毒学研究所所长。

———Charles M. Rice:证实丙肝病毒可以引起肝炎———

上面两位研究对于丙肝发现具有决定性意义,但是有一个很基本的问题就是:丙型肝炎真的是丙肝病毒引发的?

于是研究人员就去探究病毒是否引可以在体内复制并形成疾病,而这个时候,圣路易斯华盛顿大学的研究员查尔斯·赖斯(Charles M. Rice)等就起到了至关重要的作用。

但是丙肝病毒感染活细胞是个不容易的事情。

他们通过基因改造的办法对丙型肝炎病毒进行了研究,包括病毒突变研究,发现该病毒注射到黑猩猩肝脏中,可以在血液中检测到病毒,并且引发了和人肝炎类似的症状,于是解决了丙肝病毒引发肝炎的情况。

查尔斯·赖斯(Charles M. Rice)于1952年出生在萨克拉曼多。于1981年在加州理工学院获得博士学位,并于1981年至1985年期间接受了博士后培训。于1986年在圣路易斯华盛顿大学医学院成立了研究小组,并于1995年成为正式教授。自2001年以来,一直担任纽约洛克菲勒大学的教授。在2001年至2018年期间,一直是洛克菲勒大学丙型肝炎研究中心的科学与执行主任,并一直活跃在该中心。


可以说,这三位为丙肝的发现和研究奠定了基础。

那么,接下来就是如何消灭病毒治疗丙肝了。

首先第一步是:清除血液丙肝

既然丙肝是血液传播,那么检测血液中的丙肝病毒,然后避免输血感染自然是最佳的办法。通过输血时候检测丙肝,可以将丙肝的流行降低几十倍,而正因为如此,全球丙肝未能造成大流行。

第二步是:开发药物

有了病毒,有了实验方法,那么接下来就是开发药物了。当今世界上很多医药公司已经开发出丙肝药物,使得丙肝不再是不治之症。如今丙肝已经可以彻底治愈了。


有意思的是,诺奖颁奖委员会还提到了新冠病毒,其实今年是病毒的肆虐一年,新冠病毒引发了全球的危机,而丙肝的研究可以说是一个非常成功地人类对抗病毒的案例,因此这也是今年选择丙肝作为诺奖的一个重要因素,为人类对抗病毒提供很好的样板。



最后,领略下几位大神的代表作:

Alter HJ, Holland PV, Purcell RH, Lander JJ, Feinstone SM, Morrow AG, Schmidt PJ. Posttransfusion hepatitis after exclusion of commercial and hepatitis-B antigen-positive donors. Ann Intern Med. 1972; 77:691-699.

Feinstone SM, Kapikian AZ, Purcell RH, Alter HJ, Holland PV. Transfusion-associated hepatitis not due to viral hepatitis type A or B. N Engl J Med. 1975; 292:767-770.

Alter HJ, Holland PV, Morrow AG, Purcell RH, Feinstone SM, Moritsugu Y. Clinical and serological analysis of transfusion-associated hepatitis. Lancet. 1975; 2:838-841.

Alter HJ, Purcell RH, Holland PV, Popper H. Transmissible agent in non-A, non-B hepatitis. Lancet. 1978; 1:459-463.

Choo QL, Kuo G, Weiner AJ, Overby LR, Bradley DW, Houghton M. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science. 1989; 244:359-362.

Kuo G., Choo QL, Alter HJ, Gitnick GL, Redeker AG, Purcell RH, Miyamura T, Dienstag JL, Alter CE, Stevens CE, Tegtmeier GE, Bonino F, Colombo M, Lee WS, Kuo C., Berger K, Shuster JR, Overby LR, Bradley DW, Houghton M. An assay for circulating antibodies to a major etiologic virus of human non-A, non-B hepatitis. Science. 1989; 244:362-364.

Kolykhalov AA, Agapov EV, Blight KJ, Mihalik K, Feinstone SM, Rice CM. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science. 1997; 277:570-574.

类似的话题

  • 回答
    2020年的诺贝尔生理学或医学奖,颁给了三位杰出的科学家:Harvey J. Alter、Michael Houghton 和 Charles M. Rice,以表彰他们在发现丙型肝炎病毒(HCV)方面所做的开创性工作。这项发现的重要性,就好比是在一场漫长而痛苦的斗争中,终于找到了敌人隐藏的身份,从.............
  • 回答
    战胜癌魔的新篇章:通俗理解癌症免疫疗法及其重大意义想象一下,我们身体里有一支英勇的军队——免疫系统。这支军队日夜巡逻,识别并消灭入侵的细菌、病毒,以及体内那些不按常理出牌、不断增殖的癌细胞。然而,癌细胞就像狡猾的叛徒,它们学会了伪装,甚至能够悄悄地潜伏在免疫系统的眼皮底下,逃避追捕。2018年的诺贝.............
  • 回答
    好的,我们来用通俗易懂的方式,好好聊聊2018年诺贝尔化学奖的“定向进化”技术,以及它在我们生活中的实际应用。首先,我们得知道这个奖项为什么这么重要。这个奖项颁给了三位科学家:Frances H. Arnold、George P. Smith 和 Sir Gregory P. Winter。他们最重.............
  • 回答
    好的,让我们来通俗易懂地理解一下2017年诺贝尔化学奖授予的“冷冻电镜”技术,以及它对我们生活产生的重大影响。 什么是冷冻电镜?—— 像给分子拍 X 光片,但更清楚!想象一下,你想知道一个非常非常小的东西,比如蛋白质,长什么样子。我们平时用显微镜可以看到一些形状,但如果想看到它最细微的结构,比如它内.............
  • 回答
    想象一下,我们的身体就像一个庞大的城市,而细胞就是这个城市里辛勤工作的市民。这些市民需要氧气才能生存和工作,就像城市需要电力一样。但是,就像城市里的电力供应可能会时有时无,有时候充裕,有时候又很紧张,我们身体里的细胞也需要一种机制来感知和应对氧气浓度的变化。2019年的诺贝尔生理学或医学奖,就是颁给.............
  • 回答
    韦达跳跃:一个关于数论的奇妙故事想象一下,我们生活在一个由数字组成的奇妙世界里。在这个世界里,数字们有着自己的规律和秘密,等待着我们去发现。今天,我们要讲一个关于数字们之间“跳跃”的故事,这个故事的主角叫做“韦达跳跃”。 什么是韦达跳跃?“韦达跳跃”这个名字听起来有点高大上,但其实它描述的是一个非常.............
  • 回答
    想象一下,我们把一大堆特别特别小的粒子,比如原子,放进一个冷得不能再冷的“冰柜”里。这个“冰柜”可不是普通的冰箱,它能把粒子的温度降到接近绝对零度(273.15℃)。当我们把温度降到这么低的时候,这些原子们就变得非常“听话”了。它们不再像平时那样到处乱跑,各自为政,而是慢慢地、慢慢地,开始“黏”在一.............
  • 回答
    想象一下,我们日常生活中最熟悉的液体,比如水、牛奶、油,它们都表现得非常“乖巧”。你倒它,它就顺着杯子流下来;你搅它,它就乖乖地转;你拿东西放进去,它也就那么静静地待着。这些,都是我们称为“牛顿流体”的典型代表。它们的“乖巧”程度,和施加在它们身上的力(也就是你搅动、倾倒的动作)是成正比的,而且,它.............
  • 回答
    嘿,想象一下,我们每个人体内都有一个看不见的“生物钟”,它就像一个精密的计时器,指挥着我们身体的各种活动,比如什么时候该睡觉,什么时候该醒来,什么时候该吃饭,甚至我们体温什么时候最高,什么时候最低。这个神奇的钟,就是我们今天要聊的“昼夜节律”。2017年的诺贝尔生理学或医学奖,就颁给了三位科学家,他.............
  • 回答
    咱们今天就来聊聊一个在投资理财界经常露面的词儿——内部收益率,也就是IRR。听着挺专业的,但其实用大白话讲,它就是评估一个投资项目值不值得干的一个“尺子”。想象一下,你是个小老板,手里有点闲钱,想做个买卖。 这个买卖呢,不是说今天买明天卖就能赚钱,而是说你得投一笔钱进去,然后这个买卖会持续好几年,每.............
  • 回答
    量子传输:不是“瞬移”,而是“克隆”信息的奥秘你有没有想过,有没有一种办法,能把某个物体的信息瞬间传递到另一个地方,就像科幻电影里的“空间跳跃”一样? 很多时候,我们会把“量子传输”和这种“瞬移”混为一谈,但实际上,它和科幻电影里的那种“把人传过去”的概念,有着本质的区别。通俗点说,量子传输更像是在.............
  • 回答
    咱们聊聊“分布式系统”,这个词听起来有点儿高大上,但其实道理很简单,就像我们生活中经常遇到的一些事情一样。什么是分布式系统?通俗地讲想象一下,你有一项特别大的工作要做,比如要同时管理全国所有客户的订单,或者要处理海量的数据分析。如果一个人(一台电脑)来做,那简直是分身乏术,忙不过来,而且一旦这个人(.............
  • 回答
    嘿,咱们今天来聊聊“极大似然估计法”,听着名字挺高大上的,但其实骨子里是个特别接地气的想法。就好比我们平时在生活里做判断一样,只不过它有了一套数学的规矩。先抛开数学,咱们从生活里找个例子。想象一下,你面前有这么一个盒子,里面装了一些红球和蓝球。你不知道里面到底有多少红球,多少蓝球,只知道球的总数是确.............
  • 回答
    想象一下,你的基因就像一本非常、非常厚的食谱,里面记录了你身体如何建造、如何运转的所有指令。而基因编辑技术,比如CRISPR,就像一把极其精密的“分子剪刀”,它的目标是找到食谱里的一个特定“词语”(也就是DNA序列),然后把它剪掉、替换或者修改。脱靶效应,通俗地说,就是你的分子剪刀不小心剪错了地方。.............
  • 回答
    想象一下,你手里有一堆积木,你想要知道这堆积木总共有多少块。但你就是数不过来,或者积木太多了,数到眼花缭乱。这时候,如果你想用一种“聪明”的方法来估算,蒙特卡洛方法就可以帮上忙了。通俗理解蒙特卡洛方法:瞎猜也得有点门道蒙特卡洛方法,说白了,就是 “大量随机抽样” 来解决那些很难直接计算的问题。它就像.............
  • 回答
    想象一下,你现在正身处一个陌生的大城市,手机没电了,也看不懂路边的指示牌,心里有点儿慌。这时候,如果你能随身携带一个能告诉你“你在哪儿,去哪儿”的小帮手,是不是就觉得踏实多了?北斗卫星导航系统,就像是这样一位随时随地守护着我们的“超级导航员”。要理解北斗,我们可以把它想象成一个巨大的、看不见的“宇宙.............
  • 回答
    咱就聊聊咱们的“中国天眼”FAST,别看它名字里有个“眼”,它可不是个普通的眼睛,更不是用来“看”星星眨不眨眼的。简单来说,FAST 就是一个超级无敌大的“耳朵”,而且是专门用来听宇宙深处传来的声音的。FAST 的“大”和“耳朵”的含义:你想象一下,平时咱们听音乐,用的是小耳朵。但如果有人在很远很远.............
  • 回答
    罗素悖论:一场搅动数学根基的“思想海啸”想象一下,我们一直以来相信的数学大厦,那严谨、有序、无懈可击的逻辑体系,突然被一颗小小的“石子”动摇了根本。这颗石子,就是二十世纪初由哲学家兼数学家伯特兰·罗素提出的那个让无数人心头一震的悖论——罗素悖论。它不仅给当时风头正劲的数学基础研究带来了巨大的冲击,更.............
  • 回答
    温暖的拥抱,刺痛的感受——2021年诺贝尔生理学或医学奖带给我们的惊喜想象一下,你走在冬日寒风中,瑟瑟发抖,然后钻进一个暖烘烘的房间,那一瞬间的舒适感扑面而来。又或者,你不小心碰到了滚烫的炉灶,一股尖锐的疼痛瞬间让你缩回手。这些再寻常不过的体验,我们每天都在经历,但它们背后却隐藏着生物学上极其精妙的.............
  • 回答
    行家们在调查川航那个惊心动魄的备降事件时,提到风挡的密封圈可能出了问题,而且风挡内部好像还有个小小的“夹层”,结果外面来的水汽就悄悄地钻进去了。这话说得可能有点绕,咱们来拆解一下,用大白话聊聊这事儿到底是怎么回事儿。首先,啥叫“风挡”?简单说,飞机前面那块又大又厚的玻璃,就是风挡,也叫挡风玻璃。它可.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有