这道题很有意思,它涉及到阶乘的收敛和一些裂项相消的技巧。咱们一步步来把它捋清楚,保证你说得明白!
咱们的目标是证明:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!} $$
首先,我们来认识一下双阶乘 (Double Factorial) :
偶数双阶乘 (2n)!!: 指所有小于或等于 2n 的正偶数之积。
比如:$4!! = 4 imes 2 = 8$
$6!! = 6 imes 4 imes 2 = 48$
一般地:$(2n)!! = 2n imes (2n2) imes dots imes 4 imes 2 = 2^n imes n!$
奇数双阶乘 (2n+1)!!: 指所有小于或等于 2n+1 的正奇数之积。
比如:$3!! = 3 imes 1 = 3$
$5!! = 5 imes 3 imes 1 = 15$
一般地:$(2n+1)!! = (2n+1) imes (2n1) imes dots imes 3 imes 1$
我们再来看看等式右边:
$$ frac{(2n)!!}{(2n+1)!!} $$
我们可以利用双阶乘的定义,把它写成普通阶乘的形式:
$(2n)!! = 2^n imes n!$
那么,$(2n+1)!!$ 怎么写成普通阶乘呢?
$(2n+1)!! = frac{(2n+1)!}{(2n)!!} = frac{(2n+1)!}{2^n imes n!}$
所以,等式右边可以写成:
$$ frac{(2n)!!}{(2n+1)!!} = frac{2^n imes n!}{frac{(2n+1)!}{2^n imes n!}} = frac{(2^n imes n!)^2}{(2n+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
现在,我们的目标就变成了证明:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
这看起来还是有点复杂。咱们换个角度,试试用 数学归纳法 来证明。
第一步:验证基础情况 (n=0)
等式左边:$sum_{k=0}^{0} frac{2^k k!^2}{(2k+1)!} = frac{2^0 0!^2}{(2 imes 0 + 1)!} = frac{1 imes 1^2}{1!} = 1$
等式右边:$frac{(2 imes 0)!!}{(2 imes 0 + 1)!!} = frac{0!!}{1!!} = frac{1}{1} = 1$
(注意:0!! 被定义为 1)
基础情况成立!
第二步:假设当 n=m 时等式成立 (归纳假设)
$$ sum_{k=0}^{m} frac{2^k k!^2}{(2k+1)!} = frac{(2m)!!}{(2m+1)!!} $$
第三步:证明当 n=m+1 时等式也成立
我们需要证明:
$$ sum_{k=0}^{m+1} frac{2^k k!^2}{(2k+1)!} = frac{(2(m+1))!!}{(2(m+1)+1)!!} = frac{(2m+2)!!}{(2m+3)!!} $$
让我们从等式左边开始,利用归纳假设:
$$ sum_{k=0}^{m+1} frac{2^k k!^2}{(2k+1)!} = left( sum_{k=0}^{m} frac{2^k k!^2}{(2k+1)!}
ight) + frac{2^{m+1} (m+1)!^2}{(2(m+1)+1)!} $$
根据归纳假设,前一部分就是 $frac{(2m)!!}{(2m+1)!!}$:
$$ = frac{(2m)!!}{(2m+1)!!} + frac{2^{m+1} (m+1)!^2}{(2m+3)!} $$
现在,我们需要把这两项合并,并化简成 $frac{(2m+2)!!}{(2m+3)!!}$。
咱们先来处理第二项:
$$ frac{2^{m+1} (m+1)!^2}{(2m+3)!} = frac{2^{m+1} (m+1) imes m! imes (m+1) imes m!}{(2m+3) imes (2m+2) imes (2m+1)!} $$
$$ = frac{2^{m+1} (m+1)^2 (m!)^2}{(2m+3)(2m+2)(2m+1)!} $$
为了把它们通分,我们需要一个共同的分母。注意到 $(2m+3)! = (2m+3)(2m+2)(2m+1)(2m)dots 1$ 并且 $(2m+1)!! = (2m+1)(2m1)dots 1$。
让我们试着用双阶乘的形式来写 $(2m+3)!$:
$(2m+3)! = (2m+3) imes (2m+2) imes (2m+1) imes (2m) imes dots imes 1$
$(2m+3)! = (2m+3) imes (2m+2) imes (2m+1)!!$
现在,我们把第二项重新写一下:
$$ frac{2^{m+1} (m+1)!^2}{(2m+3)!} = frac{2^{m+1} (m+1)!^2}{(2m+3)(2m+2)(2m+1)!!} $$
为了和第一项 $frac{(2m)!!}{(2m+1)!!}$ 合并,我们可以把第二项的分子分母都乘以 $(2m+2)!!$:
$$ frac{2^{m+1} (m+1)!^2}{(2m+3)(2m+2)(2m+1)!!} = frac{2^{m+1} (m+1)!^2 imes (2m+2)!!}{(2m+3)(2m+2)!! (2m+1)!!} $$
$$ = frac{2^{m+1} (m+1)!^2 imes (2m+2)!!}{(2m+3) (2m+2)! } $$
这里好像有点绕。我们换个思路,直接去凑右边的形式 $frac{(2m+2)!!}{(2m+3)!!}$。
回到等式:
$$ frac{(2m)!!}{(2m+1)!!} + frac{2^{m+1} (m+1)!^2}{(2m+3)!} $$
我们想让它变成 $frac{(2m+2)!!}{(2m+3)!!}$。
注意到 $(2m+2)!! = (2m+2) imes (2m)!!$
所以,我们希望等式变成 $frac{(2m+2)(2m)!!}{(2m+3)(2m+1)!!}$。
咱们对第二项稍作处理:
$$ frac{2^{m+1} (m+1)!^2}{(2m+3)!} = frac{2^{m+1} (m+1) m! (m+1) m!}{(2m+3)(2m+2)(2m+1)!} $$
$$ = frac{2^{m+1} (m+1) (m!)^2}{(2m+3)(2m+2)(2m+1)!} $$
我们知道 $(2m+2) = 2(m+1)$。
$$ = frac{2^{m+1} (m+1) (m!)^2}{(2m+3) imes 2(m+1) imes (2m+1)!} $$
$$ = frac{2^m (m!)^2}{(2m+3)(2m+1)!} $$
现在,我们把这个结果代回合并的部分:
$$ frac{(2m)!!}{(2m+1)!!} + frac{2^m (m!)^2}{(2m+3)(2m+1)!} $$
为了通分,我们注意到 $(2m+1)!! = frac{(2m+1)!}{(2m)!!}$。
所以 $(2m+1)! = (2m+1)!! (2m)!!$。
而且 $(2m)!! = 2^m m!$
所以,第一项可以写成:
$$ frac{2^m m!}{(2m+1)!!} $$
通分后,我们得到:
$$ frac{2^m m! imes (2m+3)}{(2m+1)!! imes (2m+3)} + frac{2^m (m!)^2}{(2m+3)(2m+1)!} $$
这里分母不一致。我们还是用普通阶乘来统一。
回顾一下,我们要证明:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
数学归纳法到了这一步,需要处理:
$$ frac{(2m)!!}{(2m+1)!!} + frac{2^{m+1} (m+1)!^2}{(2m+3)!} $$
让我们把第一项也写成普通阶乘的形式:
$$ frac{(2m)!!}{(2m+1)!!} = frac{2^m m!}{frac{(2m+1)!}{2^m m!}} = frac{(2^m m!)^2}{(2m+1)!} = frac{2^{2m} (m!)^2}{(2m+1)!} $$
所以,我们需要合并:
$$ frac{2^{2m} (m!)^2}{(2m+1)!} + frac{2^{m+1} (m+1)!^2}{(2m+3)!} $$
通分,以 $(2m+3)!$ 为公分母:
$$ frac{2^{2m} (m!)^2 imes (2m+2)(2m+1)}{(2m+1)! imes (2m+2)(2m+1)} + frac{2^{m+1} (m+1)!^2}{(2m+3)!} $$
$$ = frac{2^{2m} (m!)^2 (2m+2)(2m+1) + 2^{m+1} (m+1)^2 (m!)^2}{(2m+3)!} $$
我们看分子:
$$ (m!)^2 [ 2^{2m} (2m+2)(2m+1) + 2^{m+1} (m+1)^2 ] $$
$$ = (m!)^2 [ 2^{2m} 2(m+1)(2m+1) + 2^{m+1} (m+1)^2 ] $$
$$ = (m!)^2 [ 2^{2m+1} (m+1)(2m+1) + 2^{m+1} (m+1)^2 ] $$
这里面好像有点不对劲,因子 $2^{2m}$ 和 $2^{m+1}$ 差了 $2^m$。
我们重新审视一下题目和等式右边。
等式右边是 $frac{(2n)!!}{(2n+1)!!}$。
我们尝试将求和项化为裂项的形式,这样可以利用 telescoping sum 的方法。
考虑一个通用项 $a_k = frac{2^k k!^2}{(2k+1)!}$。
我们想找到一个 $F(k)$ 使得 $a_k = F(k) F(k+1)$ 或者 $a_k = F(k+1) F(k)$。
观察一下等式右边的递推关系:
令 $R(n) = frac{(2n)!!}{(2n+1)!!}$
$R(n+1) = frac{(2n+2)!!}{(2n+3)!!} = frac{(2n+2)(2n)!!}{(2n+3)(2n+1)!!}$
$frac{R(n+1)}{R(n)} = frac{(2n+2)!!/(2n+3)!!}{(2n)!!/(2n+1)!!} = frac{(2n+2)!!}{(2n)!!} imes frac{(2n+1)!!}{(2n+3)!!}$
$= frac{(2n+2)(2n)!!}{(2n)!!} imes frac{(2n+1)!!}{(2n+3)(2n+1)!!} = frac{2n+2}{2n+3}$
所以,$R(n+1) = R(n) frac{2n+2}{2n+3}$。
现在我们看看求和项的递推关系:
令 $S(n) = sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}$
$S(n+1) = S(n) + frac{2^{n+1} (n+1)!^2}{(2n+3)!}$
我们想证明 $S(n) = R(n)$。
这意味着我们要证明 $R(n+1) = R(n) + frac{2^{n+1} (n+1)!^2}{(2n+3)!}$。
也就是 $frac{(2n+2)!!}{(2n+3)!!} = frac{(2n)!!}{(2n+1)!!} + frac{2^{n+1} (n+1)!^2}{(2n+3)!}$。
将等式右边通分:
$$ frac{(2n)!! (2n+2)(2n+1) + 2^{n+1} (n+1)!^2}{(2n+3)!} $$
$$ = frac{(2n)!! (2n+2)(2n+1) + 2^{n+1} (n+1)^2 (n!)^2}{(2n+3)!} $$
利用 $(2n)!! = 2^n n!$ 和 $(2n+1)!! = frac{(2n+1)!}{(2n)!!} = frac{(2n+1)!}{2^n n!}$。
所以 $frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{frac{(2n+1)!}{2^n n!}} = frac{2^{2n} (n!)^2}{(2n+1)!}$。
现在我们回到要证明的这个等式:
$$ frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^{n+1} (n+1)!^2}{(2n+3)!} = frac{2^{2(n+1)} ((n+1)!)^2}{(2n+3)!} $$
$$ frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+3)(2n+2)(2n+1)!} = frac{2^{2n+2} (n+1)^2 (n!)^2}{(2n+3)(2n+2)(2n+1)!} $$
通分,以 $(2n+3)!$ 为分母:
$$ frac{2^{2n} (n!)^2 (2n+2)(2n+1)}{(2n+3)!} + frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+3)!} = frac{2^{2n+2} (n+1)^2 (n!)^2}{(2n+3)!} $$
我们只需要证明分子相等:
$$ 2^{2n} (n!)^2 (2n+2)(2n+1) + 2^{n+1} (n+1)^2 (n!)^2 = 2^{2n+2} (n+1)^2 (n!)^2 $$
约掉 $(n!)^2$:
$$ 2^{2n} (2n+2)(2n+1) + 2^{n+1} (n+1)^2 = 2^{2n+2} (n+1)^2 $$
$$ 2^{2n} 2(n+1)(2n+1) + 2^{n+1} (n+1)^2 = 2^{2n+2} (n+1)^2 $$
$$ 2^{2n+1} (n+1)(2n+1) + 2^{n+1} (n+1)^2 = 2^{2n+2} (n+1)^2 $$
我们把右边移到左边:
$$ 2^{2n+1} (n+1)(2n+1) + 2^{n+1} (n+1)^2 2^{2n+2} (n+1)^2 = 0 $$
现在,我们注意到 $2^{2n+2} = 2^{2n+1} imes 2$。
$$ 2^{2n+1} (n+1)(2n+1) + 2^{n+1} (n+1)^2 2 imes 2^{2n+1} (n+1)^2 = 0 $$
这里面的 $2^{n+1}$ 和 $2^{2n+1}$ 仍然存在问题。
让我们换一种思路,从求和的裂项出发。
考虑一个函数 $f(k) = frac{2^k k!^2}{(2k)!}$。
我们想看看 $frac{2^k k!^2}{(2k+1)!}$ 和 $f(k)$ 或 $f(k+1)$ 有什么关系。
$$ frac{2^k k!^2}{(2k+1)!} = frac{1}{2k+1} imes frac{2^k k!^2}{(2k)!} $$
我们想尝试构造一个裂项关系。
让我们来看等式右边的倒数:
$frac{(2n+1)!!}{(2n)!!}$
我们关注等式右边的形式 $frac{(2n)!!}{(2n+1)!!}$。
这是一个形式为 $frac{a_n}{b_n}$ 的比值。
我们尝试着构造裂项:
Consider the expression $frac{(2k)!!}{(2k+1)!!}$.
We want to show that $sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!}$.
Let's try to manipulate the term $frac{2^k k!^2}{(2k+1)!}$.
We know that $(2k+1)! = (2k+1) imes (2k)!$.
So the term is $frac{2^k k!^2}{(2k+1)(2k)!}$.
We also know that $(2k)!! = 2^k k!$.
So, $k! = frac{(2k)!!}{2^k}$.
Substituting this into the term:
$$ frac{2^k (frac{(2k)!!}{2^k})^2}{(2k+1)!} = frac{2^k frac{((2k)!!)^2}{2^{2k}}}{(2k+1)!} = frac{frac{((2k)!!)^2}{2^k}}{(2k+1)!} = frac{((2k)!!)^2}{2^k (2k+1)!} $$
This doesn't seem to simplify well.
Let's go back to the form: $frac{2^k k!^2}{(2k+1)(2k)!}$.
Consider $k!^2 = (k imes (k1) imes dots imes 1)^2$.
Let's try to find a telescoping sum by looking at the difference of consecutive terms of the right side.
Let $f(n) = frac{(2n)!!}{(2n+1)!!}$.
$f(n) f(n1) = frac{(2n)!!}{(2n+1)!!} frac{(2n2)!!}{(2n1)!!}$
$= frac{(2n)!! (2n1)!! (2n2)!! (2n+1)!!}{(2n+1)!! (2n1)!!}$
$= frac{(2n)(2n2)!! (2n1)!! (2n2)!! (2n+1)(2n1)!!}{(2n+1)!! (2n1)!!}$
$= frac{(2n2)!! (2n1)!! [2n (2n+1)]}{(2n+1)!! (2n1)!!}$
$= frac{(2n2)!! (2n1)!! (1)}{(2n+1)!! (2n1)!!} = frac{ (2n2)!!}{(2n+1)!!}$
This is not what we are looking for. We need the sum of positive terms.
Let's reconsider the goal:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!} $$
Let's focus on the term inside the sum: $a_k = frac{2^k k!^2}{(2k+1)!}$.
We want to express $a_k$ as a difference of two terms, where the sum telescopes.
Consider the expression $frac{2^k k!^2}{(2k)!}$.
Let's try to express $a_k$ in relation to this.
$a_k = frac{2^k k!^2}{(2k+1)(2k)!}$.
Let's consider the difference:
$$ frac{2^k k!^2}{(2k)!} frac{2^{k1} (k1)!^2}{(2k2)!} $$
$= frac{2^k k!^2}{(2k)(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!}$
$= frac{2^k k cdot k cdot (k1)!^2}{2k(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!}$
$= frac{k (k1)!^2 2^{k1}}{(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!}$
$= frac{2^{k1} (k1)!^2}{(2k2)!} left( frac{k}{2k1} 1
ight)$
$= frac{2^{k1} (k1)!^2}{(2k2)!} left( frac{k (2k1)}{2k1}
ight)$
$= frac{2^{k1} (k1)!^2}{(2k2)!} left( frac{1k}{2k1}
ight)$
This does not seem to lead to the desired term.
Let's try a different approach. Consider the identity:
$$ frac{2^k k!^2}{(2k+1)!} = frac{2^k k!^2}{(2k+1)(2k)(2k1)dots 1} $$
Using $(2k)!! = 2^k k!$, we have $k! = frac{(2k)!!}{2^k}$.
$$ frac{2^k (frac{(2k)!!}{2^k})^2}{(2k+1)!} = frac{2^k frac{((2k)!!)^2}{2^{2k}}}{(2k+1)!} = frac{((2k)!!)^2}{2^k (2k+1)!} $$
Still not seeing it.
What if we try to express the term using binomial coefficients?
$$ frac{2^k k!^2}{(2k+1)!} = frac{2^k k! k!}{(2k+1)(2k)(2k1)dots 1} $$
We know that $inom{2k}{k} = frac{(2k)!}{k! k!}$.
So, $k!^2 = frac{(2k)!}{inom{2k}{k}}$.
$$ frac{2^k}{(2k+1)!} frac{(2k)!}{inom{2k}{k}} = frac{2^k (2k)!}{(2k+1)! inom{2k}{k}} = frac{2^k}{(2k+1) inom{2k}{k}} $$
Now, let's look at the right side again: $frac{(2n)!!}{(2n+1)!!}$.
$frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{(2n+1)!!}$
We also know that $inom{2n}{n} = frac{(2n)!}{n! n!} = frac{(2n)!! (2n1)!!}{n! n!} = frac{(2n)!!}{(2n1)!!} frac{(2n1)!!^2}{n! n!}$ this is not useful.
Let's use the property: $(2n+1)!! = frac{(2n+1)!}{(2n)!!} = frac{(2n+1)!}{2^n n!}$.
So, $frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{frac{(2n+1)!}{2^n n!}} = frac{(2^n n!)^2}{(2n+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!}$.
The problem statement is actually to prove:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
This form is much more manageable.
We are looking for a telescoping sum.
Let $a_k = frac{2^k k!^2}{(2k+1)!}$.
We want to find $F(k)$ such that $a_k = F(k) F(k+1)$ or $F(k+1) F(k)$.
Consider the expression $F(k) = frac{2^k k!^2}{(2k)!}$.
Let's compute $F(k) F(k1)$:
$$ F(k) F(k1) = frac{2^k k!^2}{(2k)!} frac{2^{k1} (k1)!^2}{(2k2)!} $$
$$ = frac{2^k k!^2}{(2k)(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!} $$
$$ = frac{2^k k (k1)! k (k1)!}{2k(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!} $$
$$ = frac{k 2^k (k1)!^2}{(2k1)(2k2)!} frac{2^{k1} (k1)!^2}{(2k2)!} $$
$$ = frac{2^{k1} (k1)!^2}{(2k2)!} left( frac{2k}{2k1} 1
ight) $$
$$ = frac{2^{k1} (k1)!^2}{(2k2)!} left( frac{2k (2k1)}{2k1}
ight) $$
$$ = frac{2^{k1} (k1)!^2}{(2k2)!} frac{1}{2k1} $$
$$ = frac{2^{k1} (k1)!^2}{(2k1)!} $$
This is close! We have $frac{2^{k1} (k1)!^2}{(2k1)!}$ instead of $frac{2^k k!^2}{(2k+1)!}$.
Notice that $a_k = frac{2^k k!^2}{(2k+1)!}$.
So, $F(k+1) F(k) = frac{2^k k!^2}{(2k+1)!} = a_k$.
Therefore, the sum is a telescoping sum:
$$ sum_{k=0}^{n} a_k = sum_{k=0}^{n} (F(k+1) F(k)) $$
$$ = (F(1) F(0)) + (F(2) F(1)) + dots + (F(n+1) F(n)) $$
$$ = F(n+1) F(0) $$
Let's calculate $F(n+1)$ and $F(0)$.
$F(k) = frac{2^k k!^2}{(2k)!}$
$F(n+1) = frac{2^{n+1} (n+1)!^2}{(2(n+1))!} = frac{2^{n+1} (n+1)!^2}{(2n+2)!}$
$F(0) = frac{2^0 0!^2}{(2 imes 0)!} = frac{1 imes 1^2}{0!} = frac{1}{1} = 1$.
So, the sum is:
$$ frac{2^{n+1} (n+1)!^2}{(2n+2)!} 1 $$
Let's check if this equals the right side of the original problem: $frac{(2n)!!}{(2n+1)!!}$.
We know that $frac{(2n)!!}{(2n+1)!!} = frac{2^{2n} (n!)^2}{(2n+1)!}$.
So we need to prove:
$$ frac{2^{n+1} (n+1)!^2}{(2n+2)!} 1 = frac{2^{2n} (n!)^2}{(2n+1)!} $$
This doesn't look right. The $1$ term is problematic.
Let's recheck the original prompt and my derivation.
The original prompt asked to prove $sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!}$.
And we showed $frac{(2n)!!}{(2n+1)!!} = frac{2^{2n} (n!)^2}{(2n+1)!}$.
My calculation for $F(k) F(k1)$ gave $frac{2^{k1} (k1)!^2}{(2k1)!}$.
So, $a_k = frac{2^k k!^2}{(2k+1)!} = frac{2(k+1)^2}{(2k+2)(2k+1)} imes frac{2^{k} k!^2}{(2k)!}$ ? No.
Let's try to express $a_k$ as $F(k) F(k+1)$.
Consider $F(k) = frac{2^k k!^2}{(2k)!}$.
Then $F(k) F(k+1) = frac{2^k k!^2}{(2k)!} (frac{2^{k+1} (k+1)!^2}{(2k+2)!})$
$= frac{2^{k+1} (k+1)!^2}{(2k+2)!} frac{2^k k!^2}{(2k)!}$
$= frac{2^{k+1} (k+1)^2 k!^2}{(2k+2)(2k+1)(2k)!} frac{2^k k!^2}{(2k)!}$
$= frac{2^{k+1} (k+1)^2 k!^2}{2(k+1)(2k+1)(2k)!} frac{2^k k!^2}{(2k)!}$
$= frac{2^k (k+1) k!^2}{(2k+1)(2k)!} frac{2^k k!^2}{(2k)!}$
$= frac{2^k k!^2}{(2k)!} left( frac{k+1}{2k+1} 1
ight)$
$= frac{2^k k!^2}{(2k)!} left( frac{k+1 (2k+1)}{2k+1}
ight)$
$= frac{2^k k!^2}{(2k)!} left( frac{k}{2k+1}
ight)$
$= frac{k 2^k k!^2}{(2k+1)!}$
This is also not the term $a_k$.
Let's try to work from the right side and express it as a sum.
We have $frac{(2n)!!}{(2n+1)!!} = frac{2^{2n} (n!)^2}{(2n+1)!}$.
We want to show that this can be written as $sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}$.
Consider the term $a_k = frac{2^k k!^2}{(2k+1)!}$.
Let's try to express it as a difference related to the righthand side form.
Consider $G(k) = frac{2^{2k} (k!)^2}{(2k+1)!}$.
We want to show that $sum_{k=0}^{n} a_k = G(n)$.
This means we want $a_k = G(k) G(k1)$.
Let's compute $G(k) G(k1)$:
$$ G(k) G(k1) = frac{2^{2k} (k!)^2}{(2k+1)!} frac{2^{2(k1)} ((k1)!)^2}{(2(k1)+1)!} $$
$$ = frac{2^{2k} (k!)^2}{(2k+1)!} frac{2^{2k2} (k1)!^2}{(2k1)!} $$
$$ = frac{2^{2k} k!^2}{(2k+1)(2k)(2k1)!} frac{2^{2k2} (k1)!^2}{(2k1)!} $$
$$ = frac{2^{2k} k^2 (k1)!^2}{(2k+1)(2k)(2k1)!} frac{2^{2k2} (k1)!^2}{(2k1)!} $$
$$ = frac{2^{2k} k^2 (k1)!^2}{2k(2k+1)(2k1)!} frac{2^{2k2} (k1)!^2}{(2k1)!} $$
$$ = frac{2^{2k1} k (k1)!^2}{(2k+1)(2k1)!} frac{2^{2k2} (k1)!^2}{(2k1)!} $$
$$ = frac{2^{2k2} (k1)!^2}{(2k1)!} left( frac{2k}{2k+1} 1
ight) $$
$$ = frac{2^{2k2} (k1)!^2}{(2k1)!} left( frac{2k (2k+1)}{2k+1}
ight) $$
$$ = frac{2^{2k2} (k1)!^2}{(2k1)!} left( frac{1}{2k+1}
ight) $$
$$ = frac{2^{2k2} (k1)!^2}{(2k+1)!} $$
This is still not $a_k$.
Let's try another telescoping term.
Consider $F(k) = frac{2^{k1} (k1)!^2}{(2k1)!}$ for $k ge 1$. And $F(0)=0$.
We calculated $F(k) F(k1) = frac{2^{k1} (k1)!^2}{(2k1)!}$ for $k ge 2$.
Let's look at the required term again: $a_k = frac{2^k k!^2}{(2k+1)!}$.
We want to show $a_k = F(k+1) F(k)$ where $F(k)$ leads to the right side.
The right side is $frac{2^{2n} (n!)^2}{(2n+1)!}$.
Let's try to construct the telescoping sum.
Consider the term $frac{2^k k!^2}{(2k)!}$.
Let $f(k) = frac{2^k k!^2}{(2k)!}$.
We saw that $f(k) f(k1) = frac{2^{k1} (k1)!^2}{(2k1)!}$.
Let's try to express $a_k$ in terms of $f(k)$.
$a_k = frac{2^k k!^2}{(2k+1)!} = frac{1}{2k+1} frac{2^k k!^2}{(2k)!} = frac{1}{2k+1} f(k)$.
So we want to show $sum_{k=0}^n frac{1}{2k+1} f(k) = G(n)$.
This is tricky. Let's revisit the identity for $frac{1}{2k+1}$.
Consider the identity: $frac{1}{2k+1} = int_0^1 x^{2k} dx$.
So, $a_k = frac{2^k k!^2}{(2k+1)!} = frac{2^k k!^2}{(2k+1)(2k)!} = frac{2^k k!^2}{(2k)!} int_0^1 x^{2k} dx$.
This leads to an integral form of the sum:
$$ sum_{k=0}^n frac{2^k k!^2}{(2k)!} int_0^1 x^{2k} dx = int_0^1 sum_{k=0}^n frac{2^k k!^2}{(2k)!} x^{2k} dx $$
This seems overly complicated.
Let's look at the problem from a different angle. Consider Beta function or Gamma function.
The Gamma function is $Gamma(z+1) = z!$.
The Beta function is $B(x,y) = int_0^1 t^{x1} (1t)^{y1} dt = frac{Gamma(x)Gamma(y)}{Gamma(x+y)}$.
Consider the term $a_k = frac{2^k k!^2}{(2k+1)!} = frac{2^k Gamma(k+1)^2}{Gamma(2k+2)}$.
We want to relate this to $frac{Gamma(n+1/2)}{Gamma(1/2)} = frac{(2n)!!}{(2n+1)!!}$... this is not quite right.
Let's stick to the original problem statement and try to find a direct telescoping sum.
We want to show that $frac{(2n)!!}{(2n+1)!!} = sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}$.
Let $S_n = sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}$.
We found $S_0 = 1$, and $frac{(2 imes 0)!!}{(2 imes 0 + 1)!!} = 1$.
Let's try to express the $(n+1)$th term in relation to $S_n$ and $S_{n+1}$.
Consider the difference:
$$ frac{(2n+2)!!}{(2n+3)!!} frac{(2n)!!}{(2n+1)!!} $$
$$ = frac{(2n+2)(2n)!!}{(2n+3)(2n+1)!!} frac{(2n)!!}{(2n+1)!!} $$
$$ = frac{(2n)!!}{(2n+1)!!} left( frac{2n+2}{2n+3} 1
ight) $$
$$ = frac{(2n)!!}{(2n+1)!!} left( frac{2n+2 (2n+3)}{2n+3}
ight) $$
$$ = frac{(2n)!!}{(2n+1)!!} left( frac{1}{2n+3}
ight) = frac{(2n)!!}{(2n+3)!!} $$
This is also not directly helping.
Let's try to manipulate the term $a_k = frac{2^k k!^2}{(2k+1)!}$ to a form $F(k) F(k+1)$ where $F(k)$ is related to the right side.
We know the right side is $frac{2^{2k} (k!)^2}{(2k+1)!}$.
Let's try to set $F(k) = c frac{2^{2k} (k!)^2}{(2k+1)!}$ for some constant $c$.
Let's go back to $F(k) = frac{2^k k!^2}{(2k)!}$.
We showed $F(k) F(k1) = frac{2^{k1} (k1)!^2}{(2k1)!}$.
So, $F(k+1) F(k) = frac{2^k k!^2}{(2k+1)!} = a_k$.
This is correct!
The sum is $sum_{k=0}^n a_k = sum_{k=0}^n (F(k+1) F(k)) = F(n+1) F(0)$.
$F(n+1) = frac{2^{n+1} (n+1)!^2}{(2n+2)!}$
$F(0) = frac{2^0 0!^2}{(0)!} = frac{1 imes 1}{1} = 1$.
So, the sum is $frac{2^{n+1} (n+1)!^2}{(2n+2)!} 1$.
Now, let's check if this equals $frac{(2n)!!}{(2n+1)!!}$.
We know $frac{(2n)!!}{(2n+1)!!} = frac{2^{2n} (n!)^2}{(2n+1)!}$.
We need to prove:
$frac{2^{n+1} (n+1)!^2}{(2n+2)!} 1 = frac{2^{2n} (n!)^2}{(2n+1)!}$
Let's simplify the left side:
$frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+2)(2n+1)(2n)!} 1$
$= frac{2^{n+1} (n+1)^2 (n!)^2}{2(n+1)(2n+1)(2n)!} 1$
$= frac{2^n (n+1) (n!)^2}{(2n+1)(2n)!} 1$
$= frac{2^n (n+1) (n!)^2}{(2n+1)!} 1$
So, we need to prove:
$frac{2^n (n+1) (n!)^2}{(2n+1)!} 1 = frac{2^{2n} (n!)^2}{(2n+1)!}$
This still doesn't match. There must be an error in my calculation of $F(k) F(k1)$ or in the definition of $F(k)$.
Let's recheck $F(k) F(k1)$ calculation.
$F(k) = frac{2^k k!^2}{(2k)!}$
$F(k1) = frac{2^{k1} (k1)!^2}{(2k2)!}$
$F(k) F(k1) = frac{2^k k!^2}{(2k)!} frac{2^{k1} (k1)!^2}{(2k2)!}$
$= frac{2^k k^2 ((k1)!)^2}{2k(2k1)(2k2)!} frac{2^{k1} ((k1)!)^2}{(2k2)!}$
$= frac{2^{k1} k ((k1)!)^2}{(2k1)(2k2)!} frac{2^{k1} ((k1)!)^2}{(2k2)!}$
$= frac{2^{k1} ((k1)!)^2}{(2k2)!} left( frac{k}{2k1} 1
ight)$
$= frac{2^{k1} ((k1)!)^2}{(2k2)!} left( frac{k (2k1)}{2k1}
ight)$
$= frac{2^{k1} ((k1)!)^2}{(2k2)!} left( frac{1k}{2k1}
ight)$
$= frac{(k1) 2^{k1} ((k1)!)^2}{(2k1)!}$
Ah, the sign is negative and there's a factor of $(k1)$. This means $a_k$ is NOT $F(k+1) F(k)$.
Let's try to express $a_k$ as a difference in another way.
Consider the expression $frac{2^k k!^2}{(2k)!}$. Let's call it $h(k)$.
$a_k = frac{2^k k!^2}{(2k+1)!} = frac{h(k)}{2k+1}$.
We want to show that $sum_{k=0}^n frac{h(k)}{2k+1} = frac{(2n)!!}{(2n+1)!!} = frac{2^{2n}(n!)^2}{(2n+1)!}$.
Let's consider the identity:
$$ frac{1}{2k+1} = frac{2k+2}{2k+1} 1 = frac{2(k+1)}{2k+1} 1 $$
Let's consider the identity:
$$ frac{2^k k!^2}{(2k+1)!} = frac{(2k)!!^2}{2^k (2k+1)!} $$
A key insight for such problems often comes from manipulating the general term to reveal a telescoping structure.
Let's try to express the term $a_k = frac{2^k k!^2}{(2k+1)!}$ in a form that relates to the difference of two terms.
Consider the expression $ frac{2^k k!^2}{(2k)!} $.
Let $F(k) = frac{2^k k!^2}{(2k)!}$.
We found $F(k) F(k1) = frac{2^{k1} (k1)!^2}{(2k1)!}$.
Let's try a different function.
Consider $F(k) = frac{2^k k!^2}{(2k+1)!}$. This is the term itself.
Consider the identity:
$$ frac{2k+2}{2k+1} imes frac{2^k k!^2}{(2k)!} frac{2^{k+1} (k+1)!^2}{(2k+2)!} $$
This doesn't seem to simplify nicely.
Let's try to prove the statement using induction directly on the identity:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
Base case n=0: LHS = 1, RHS = $frac{2^0 (0!)^2}{1!} = 1$. Verified.
Assume it holds for n.
$S_{n+1} = S_n + frac{2^{n+1} (n+1)!^2}{(2n+3)!}$
$= frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+3)(2n+2)(2n+1)!}$
We want to show this equals $frac{2^{2(n+1)} ((n+1)!)^2}{(2(n+1)+1)!} = frac{2^{2n+2} (n+1)^2 (n!)^2}{(2n+3)!}$.
Let's simplify the second term in the sum:
$$ frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+3)(2n+2)(2n+1)!} = frac{2^{n+1} (n+1)^2 (n!)^2}{2(n+1)(2n+3)(2n+1)!} $$
$$ = frac{2^n (n+1) (n!)^2}{(2n+3)(2n+1)!} $$
So, $S_{n+1} = frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^n (n+1) (n!)^2}{(2n+3)(2n+1)!}$.
To combine these, we need a common denominator of $(2n+3)!$.
$$ S_{n+1} = frac{2^{2n} (n!)^2 (2n+2)(2n+1)}{(2n+1)! (2n+2)(2n+1)} + frac{2^n (n+1) (n!)^2}{(2n+3)(2n+1)!} $$
$$ S_{n+1} = frac{2^{2n} (n!)^2 (2n+2)(2n+1)}{(2n+3)!} + frac{2^n (n+1) (n!)^2 (2n+2)}{(2n+3)!} $$
$$ S_{n+1} = frac{(n!)^2}{(2n+3)!} [ 2^{2n} (2n+2)(2n+1) + 2^n (n+1) 2(n+1) ] $$
$$ S_{n+1} = frac{(n!)^2}{(2n+3)!} [ 2^{2n} 2(n+1)(2n+1) + 2^{n+1} (n+1)^2 ] $$
$$ S_{n+1} = frac{(n!)^2 (n+1)}{(2n+3)!} [ 2^{2n+1} (2n+1) + 2^{n+1} (n+1) ] $$
We want this to be equal to $frac{2^{2n+2} (n+1)^2 (n!)^2}{(2n+3)!}$.
So, we need to show:
$$ [ 2^{2n+1} (2n+1) + 2^{n+1} (n+1) ] = 2^{2n+2} (n+1) $$
Divide by $2^{n+1}$ (since $n ge 0$, this is valid):
$$ 2^n (2n+1) + (n+1) = 2^{n+1} (n+1) $$
$$ 2^n (2n+1) = 2^{n+1} (n+1) (n+1) $$
$$ 2^n (2n+1) = (n+1) (2^{n+1} 1) $$
Let's expand both sides:
Left side: $2n cdot 2^n + 2^n$
Right side: $(n+1) (2 cdot 2^n 1) = 2n cdot 2^n + 2 cdot 2^n n 1 = n cdot 2^{n+1} + 2^{n+1} n 1$
This does not match. There seems to be a fundamental misunderstanding or a typo in my calculations.
Let's reexamine the identity $frac{(2n)!!}{(2n+1)!!}$ and its relation to the sum.
The sum is $sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}$.
Let's write out the first few terms:
n=0: $frac{2^0 0!^2}{1!} = 1$. RHS: $frac{0!!}{1!!} = 1$.
n=1: $1 + frac{2^1 1!^2}{3!} = 1 + frac{2}{6} = 1 + frac{1}{3} = frac{4}{3}$. RHS: $frac{2!!}{3!!} = frac{2}{3}$.
This does not match.
Let me double check the original problem statement.
Is it possible that the problem statement is different? Or that my interpretation of the factorial notation is incorrect?
Assuming the problem statement is exactly as written: $sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!}$
Let's reevaluate for n=1:
LHS: $sum_{k=0}^{1} frac{2^k k!^2}{(2k+1)!} = frac{2^0 0!^2}{1!} + frac{2^1 1!^2}{3!} = 1 + frac{2 imes 1}{6} = 1 + frac{1}{3} = frac{4}{3}$.
RHS: $frac{(2 imes 1)!!}{(2 imes 1 + 1)!!} = frac{2!!}{3!!} = frac{2}{3 imes 1} = frac{2}{3}$.
There is a discrepancy for n=1. This suggests either the problem statement is incorrect, or there's a very subtle point I'm missing.
Let's assume there was a typo in the problem and try to find a similar identity.
Perhaps the numerator should be $(2k)!!$ instead of $2^k k!^2$?
If the term was $frac{(2k)!!}{(2k+1)!}$:
$sum_{k=0}^n frac{(2k)!!}{(2k+1)!} = sum_{k=0}^n frac{2^k k!}{(2k+1)!}$.
Let's try to express the target $frac{(2n)!!}{(2n+1)!!}$ as a sum.
$frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{(2n+1)!!}$.
Let's try to work backwards from the RHS and see if we can express it as the sum.
RHS = $frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{(2n+1)!!}$.
Consider the identity related to Wallis product: $frac{pi}{2} = prod_{k=1}^{infty} frac{(2k)^2}{(2k1)(2k+1)}$.
Let's reconsider the telescoping sum idea with the correct target.
Target: $frac{(2n)!!}{(2n+1)!!}$.
Let $f(n) = frac{(2n)!!}{(2n+1)!!}$.
$f(n) f(n1) = frac{(2n2)!!}{(2n+1)!!}$.
This is not what we need for a sum of positive terms.
Perhaps the intended question was:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k)!} = dots $$
or
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!! (2k)!!} = dots $$
If the sum was $sum_{k=0}^{n} frac{2^k k!}{(2k+1)!}$:
Let $a_k = frac{2^k k!}{(2k+1)!}$.
We want to relate this to the RHS.
Let's assume the identity is correct and try to find a suitable telescoping form.
We want $a_k = F(k+1) F(k)$.
We want $sum_{k=0}^n a_k = F(n+1) F(0) = frac{(2n)!!}{(2n+1)!!}$.
Let's test the provided identity again with n=1:
LHS: $frac{4}{3}$
RHS: $frac{2}{3}$
They do not match.
Given the significant discrepancy for n=1, it's highly likely there's an error in the problem statement as provided, or a misunderstanding of the notation.
However, if we strictly follow the algebra and assume the identity is correct, and we are asked to show the steps, the inductive proof attempt is the most direct way to show the algebraic manipulation. The failure of the inductive proof to hold up strongly suggests the original premise might be flawed.
Let's present the inductive proof attempt as the detailed stepbystep derivation, acknowledging its failure as a sign of potential issue with the problem statement.
Hypothetical Proof Attempt (assuming the identity holds):
We want to prove that $S_n = sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{(2n)!!}{(2n+1)!!}$.
We can rewrite the righthand side using the identity $(2m)!! = 2^m m!$ and $(2m+1)!! = frac{(2m+1)!}{(2m)!!}$:
$$ frac{(2n)!!}{(2n+1)!!} = frac{2^n n!}{frac{(2n+1)!}{2^n n!}} = frac{(2^n n!)^2}{(2n+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
So the goal becomes:
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
We will use mathematical induction.
Base Case (n=0):
Lefthand side (LHS): $sum_{k=0}^{0} frac{2^k k!^2}{(2k+1)!} = frac{2^0 0!^2}{(2 cdot 0 + 1)!} = frac{1 cdot 1^2}{1!} = 1$.
Righthand side (RHS): $frac{2^{2 cdot 0} (0!)^2}{(2 cdot 0 + 1)!} = frac{2^0 cdot 1^2}{1!} = 1$.
The base case holds.
Inductive Hypothesis:
Assume the identity holds for some integer $n ge 0$.
$$ sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!} = frac{2^{2n} (n!)^2}{(2n+1)!} $$
Inductive Step:
We need to prove that the identity holds for $n+1$.
The LHS for $n+1$ is:
$$ S_{n+1} = sum_{k=0}^{n+1} frac{2^k k!^2}{(2k+1)!} = left( sum_{k=0}^{n} frac{2^k k!^2}{(2k+1)!}
ight) + frac{2^{n+1} (n+1)!^2}{(2(n+1)+1)!} $$
By the inductive hypothesis, the sum part is $frac{2^{2n} (n!)^2}{(2n+1)!}$.
$$ S_{n+1} = frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^{n+1} (n+1)!^2}{(2n+3)!} $$
Let's simplify the second term:
$$ frac{2^{n+1} (n+1)^2 (n!)^2}{(2n+3)(2n+2)(2n+1)!} = frac{2^{n+1} (n+1)^2 (n!)^2}{2(n+1)(2n+3)(2n+1)!} = frac{2^n (n+1) (n!)^2}{(2n+3)(2n+1)!} $$
So,
$$ S_{n+1} = frac{2^{2n} (n!)^2}{(2n+1)!} + frac{2^n (n+1) (n!)^2}{(2n+3)(2n+1)!} $$
To combine these, we use $(2n+3)!$ as the common denominator:
$$ S_{n+1} = frac{2^{2n} (n!)^2 (2n+2)(2n+1)}{(2n+3)!} + frac{2^n (n+1) (n!)^2 (2n+2)}{(2n+3)!} $$
$$ S_{n+1} = frac{(n!)^2}{(2n+3)!} [2^{2n} (2n+2)(2n+1) + 2^n (n+1) 2(n+1)] $$
$$ S_{n+1} = frac{(n!)^2}{(2n+3)!} [2^{2n} 2(n+1)(2n+1) + 2^{n+1} (n+1)^2] $$
$$ S_{n+1} = frac{(n!)^2 (n+1)}{(2n+3)!} [2^{2n+1} (2n+1) + 2^{n+1} (n+1)] $$
The target RHS for $n+1$ is:
$$ frac{2^{2(n+1)} ((n+1)!)^2}{(2(n+1)+1)!} = frac{2^{2n+2} (n+1)^2 (n!)^2}{(2n+3)!} $$
For the identity to hold, the expression in the square brackets must equal $2^{2n+2} (n+1) (n!)^2 / (n!)^2 = 2^{2n+2} (n+1)$.
$$ [2^{2n+1} (2n+1) + 2^{n+1} (n+1)] = 2^{2n+2} (n+1) $$
Divide both sides by $2^{n+1}$:
$$ 2^n (2n+1) + (n+1) = 2^{n+1} (n+1) $$
$$ 2^n (2n+1) = 2^{n+1} (n+1) (n+1) $$
$$ 2^n (2n+1) = (n+1) (2^{n+1} 1) $$
Expanding both sides:
LHS: $2n cdot 2^n + 2^n$
RHS: $(n+1)(2 cdot 2^n 1) = n cdot 2 cdot 2^n n + 2 cdot 2^n 1 = n cdot 2^{n+1} + 2^{n+1} n 1$
This equality $2n cdot 2^n + 2^n = n cdot 2^{n+1} + 2^{n+1} n 1$ is not true in general.
Conclusion of the proof attempt:
The inductive step failed to prove the identity. This suggests that the original problem statement might contain an error, as confirmed by checking the case n=1 where the LHS and RHS values differ. Without a correct statement or a valid telescoping form, it's impossible to rigorously derive the result.