问题

如何通俗理解我国科学家把「光存储时间提升至一小时」这一成果?有哪些应用场景和价值?

回答
这可真是个大新闻!咱们国家科学家在“光存储”这件事上,一下子把记录时间从之前的几分钟、十几分钟,直接飙升到了一小时,这简直是质的飞跃!

通俗理解:就像给数据戴上了一个超级“保温箱”

咱们平时说话、看视频,信息都是以电信号的形式存在的,就像一阵风,过去了就没了。而“光存储”呢,简单来说,就是把这些信息“固化”在一种特殊的介质里,就像把信息“冻”住了一样,想看的时候随时可以拿出来。

你想想,以前这个“冻住”的时间很短,可能你刚放进去,没多久就“解冻”了,信息也就丢了。现在,科学家们找到了一个超级厉害的“保温箱”,能让这些“冻住”的信息保持得非常非常久,久到可以让你把一小时的视频或者一系列操作都完整地保存下来。

打个比方:

以前的光存储: 就像你手里拿着一块冰,冰上的信息(比方说在冰上刻字)保存不了多久,很容易融化模糊。
现在的新技术: 就像你找到了一种能让这块冰保持超长时间不融化的“魔法”,哪怕放一小时,上面的字依然清晰可见。

具体是什么技术?

虽然具体细节很复杂,涉及到物理学、材料学、光学等等,但你可以理解为科学家们找到了一种特殊的材料,这种材料在受到特定光刺激后,会发生一些可逆的物理或化学变化,这些变化可以“记住”光信号的信息。更重要的是,他们找到了让这些变化“稳定”住的办法,即便撤掉了光刺激,信息也不会轻易消失,而且还能方便地“读取”出来。

提升到一小时有什么意义?

这可就厉害了!别小看这从几分钟到一小时的提升,这就像从“一次性筷子”直接升级到了“可循环利用的餐具”,意义重大:

1. 信息存储的“耐力”和“深度”大大增强: 以前只能存很短时间的数据,现在可以存更长的、更复杂的,比如高质量的视频、大量的实时数据等等。
2. 减少数据丢失的风险: 很多需要长时间记录和分析的场景,比如科学实验、医疗监测,数据中断或者丢失都是灾难性的。一小时的存储能力,大大降低了这种风险。
3. 为更长期的存储奠定基础: 既然能稳定一小时,那就有可能进一步提升到一天、一周,甚至更久。这是向“永久性存储”迈进的关键一步。

有哪些具体的应用场景和价值?

有了这个“超级保温箱”,我们的生活和工作会发生很多变化:

科学研究:
高能物理实验: 像粒子对撞机这样的实验,会产生海量的数据,而且很多重要的信号可能只持续几分钟。有了这个技术,可以直接存储更长时间的实验过程,方便后续分析,发现更多隐藏的规律。
天文观测: 望远镜捕捉到的宇宙信号有时非常短暂但信息量巨大。一小时的存储能力,意味着我们可以更完整地记录这些珍贵的天文事件,比如超新星爆发、快速射电暴等,为研究宇宙演化提供更详实的证据。
生物医学研究: 细胞活动、基因测序过程中的一些关键动态变化,有时需要持续观察。这个技术可以帮助科学家更稳定、更长时间地记录这些微观世界的奥秘。
新材料研发: 在研发新材料的过程中,会对材料进行各种测试,有些测试结果的产生可能需要一段时间。这个技术可以保证测试过程中的数据不丢失。

工业生产:
精密制造: 在高端制造业,比如芯片制造、航空航天部件生产,需要对生产过程进行高精度、长时间的监控和记录,以确保产品质量。这个技术可以提高数据采集的完整性和可靠性。
设备故障诊断: 工业设备在运行过程中可能出现一些难以预测的故障,有时故障发生的时间很短,但留下的痕迹很重要。可以记录更长时间的运行数据,帮助工程师更准确地定位和解决问题。

信息安全与数据归档:
关键数据备份: 对于一些极其重要的数据,比如金融交易记录、法律证据、国家安全信息,需要高可靠性的长期存储。这个技术为安全、高效的数据备份和归档提供了新的可能性。
“时间胶囊”式的存储: 想象一下,我们可以把一段重要的会议、一次重要的操作过程,以光的形式“封存”起来,几十年后依然可以完整地“解封”阅读,就像一个真实的“时间胶囊”。

人工智能与大数据:
训练更复杂的AI模型: AI模型,尤其是深度学习模型,需要海量的高质量数据进行训练。更长、更稳定的数据存储,可以为训练更精细、能力更强的AI模型提供支持。
实时大数据分析: 很多时候,我们需要对一段时间内的数据流进行实时分析。这个技术可以更顺畅地衔接数据采集和分析的过程,提高大数据处理的效率。

未来的存储技术:
“光硬盘”的曙光: 目前的数据存储主要依赖于磁性介质(硬盘)和闪存(固态硬盘)。光存储如果能够稳定发展,未来有望成为一种新的、速度更快、寿命更长、密度更高的存储介质,甚至可以实现“只读”但超长寿命的档案存储。

总的来说,这个“一小时”的突破,不仅仅是数字上的一个飞跃,它更是打开了通往更高阶、更可靠、更稳定数据存储世界的大门。 这意味着我们的科学家在“抓住”信息、让信息“活”得更久方面,又迈出了坚实的一步,为我们未来的科技发展和信息社会建设注入了新的强大动力。这是一个非常令人振奋的成就!

网友意见

user avatar

2021/04/30 编辑

文章的最后集中回答了评论区反复问到的几个问题。


我是论文的第一作者。看了一下前面几个回答,误解较多,所以想认真回答一下。

光存储(optical storage)是一个比较宽泛的概念。光通信和光存储作为两大光学技术,在我们日常生活中已经随处可见。光盘是典型的光存储设备,具有抗电磁干扰、存储容量大、寿命长等优点。微软、华为等公司目前正在研究新一代的光存储技术。

本文中所做的工作并不是通常的光存储,而是「相干光存储」。这里有必要区分几个概念,如图:

「相干光存储」只比光存储多了两个字,但是技术难度骤然上升。对于经典信息的存储来说,数字信号只需要以0和1两种形式保存起来即可,这可以对应于光的强与弱两种状态。例如CD-R光盘在用激光进行刻录时,利用强光在有机染料上烧制出凹凸不平的结构,用来进行0和1的编码。但是这种存储方式丢掉了光场的很多信息。

光作为一种电磁波可以写成如下形式:

可以看出光具有偏振、振幅、频率、相位、位置等多种信息维度。在光通信中,这些维度全部都是宝贵的资源。每多一种维度,信息的复用能力便能够得到倍增,由此而衍生出了波分、时分、空分等一系列复用技术,极大地扩展了光通信的信道容量。但是在传统的光存储技术中,这些信息没有被很好的保存。其中难以进行存储的一个维度就是相位。我们将能够保存光场相位信息的存储称为「相干光存储」。

所以问题来了,光场的这么多信息维度有什么用?光盘不是已经能够满足日常生活的需求了吗?光子存储器的真正作用其实是在量子信息技术中。在长距离的量子通信中,需要使用光量子存储器将光子短暂地保存在其中,以方便在通信节点之间同步各种操作;在分布式量子计算中,光量子存储器也可以用于量子态的暂存。这里,「光量子存储器」是一个比相干光存储器更加严格的要求,因为光场若要想具有量子的性质,单个光脉冲中只能包含很少量的光子数,在这种情况下,信噪比和存储效率将成为巨大的挑战。

那究竟怎样的介质才适合用于相干光场的存储呢?物理学家们很自然地想到了原子。具有合适的能级结构的原子可以将光子吸收,将自身激发至更高的能级上,形成高能级与低能级之间的叠加态。在量子力学中,原子的状态由波函数来描述,而波函数和电磁波非常类似,具有偏振、振幅、频率、相位等信息,这恰好为光场提供了合适的存储界面。如果能在原子与光场之间建立一种映射关系,那么就能够将光场地存储在原子中,同时保存光场的各种信息。我们将这样的一种存储介质称为「相干光存储器」。但是,原子的光学激发态与基态之间的相干寿命往往十分短暂,最长也不过才毫秒量级。

更进一步地,如果我们能够按照自己的意愿在任意时刻进行读取,我们称之为「按需式」(on-demand)读取,这是一个更高的要求。早在1999年,L. Hau等人在超冷钠原子气体中基于电磁感应致透明(electromagnetically induced transparency, EIT)原理首次观测到慢光(slow light)现象[1],使光的群速度从真空中的 下降到 ,仿佛将光冻结在了介质中一样。这种存储光的方式就不属于按需式读取,因为当光场入射进介质后总是会在一个确定的时间发射出来。

这种基于慢光效应的存储并没有真的将光停止住,只是将光速变慢了,另外也不能支持按需式读取。但物理学家很快就在此基础上想出了新的办法来解决这些问题。2000年,M. Fleischhauer和M. Lukin在理论上提出,可以在原子被激发后利用一个控制光场将该光学激发转移为另一个寿命较长的亚稳态的激发[2],实现光子的捕获。将光存储在原子的亚稳态能级之间可以显著地提升光子的存储寿命;此外,光子的写入和读出取决于控制光场的时机,因此可以实现按需式的读取。

截止目前,潘建伟教授的研究组基于铷原子系综的冷原子存储器是最接近实用化的光量子存储器,实现了0.22秒的存储寿命和76%的存储效率[3]。但使用原子系统作为存储介质,其存储寿命仍然受到很多因素的限制。对于热原子来说,原子的无规则运动会导致原子的失谐、碰撞加宽,破坏原子系综的相干性;对于冷原子来说,光阱带来的交流Stark效应会导致原子在毫秒的时间尺度上的退相干。原子系统中最长的光存储时间在1分钟量级,同样是在冷的铷原子系综中实现的[4]

平行于原子系统的存储,基于固态系统的存储在过去20年中也取得了一系列进展。尤其是固体中的掺杂稀土离子系统,由于晶体环境和它们的电子层结构很好地保护了它们的4f电子和原子核的相干性,这种系统在低温下天然地具有相当长的相干寿命。2013年时,同样是基于EIT协议,德国达姆施塔特大学的研究组在掺镨硅酸钇这种介质中实现了1分钟量级的光存储[5]。2015年时,澳大利亚国立大学的研究组证明掺铕硅酸钇在磁场中具有6个小时的核自旋相干时间[6];但是,由于这种材料在磁场下的能级结构十分复杂且未知,一直未能在此基础上实现光存储器。

接下来是我们研究组的工作[7]。我们首先搭建了一台光探测核磁共振谱仪去研究了掺铕硅酸钇在磁场中的能级结构,在此基础上我们像澳大利亚国立大学的研究组的做法一样,将晶体放置在一个特殊的钟跃迁(clock transition)磁场中。在该磁场中,铕离子系综的某个核自旋跃迁的频率关于磁场的一阶变化率为零,因此该跃迁可以很好地抵抗环境中的磁场扰动,有效地延长它们的相干寿命。我们在实验上采取的存储协议叫做「原子频率梳」[8](atomic frequency comb)。原子频率梳指的是原子系综基态上的周期状的吸收带结构,如下图所示,这里不再展开说了,可以参考引用的文献[8]。光子被吸收后会激发铕离子系综中的一部分铕离子至光学激发态,然后,类似于EIT协议,使用一个控制光场将这个光学的叠加态转移为原子核自旋态的叠加态。如果这两个核自旋态之间的跃迁恰好处于上面提到的钟跃迁状态,则会使存储过程具有相当长的相干寿命。在实验中,我们也的确是这么做的。当我们需要读取时,就再一次用控制光脉冲将自旋态映射回光学态,离子系综会发射一个回波(echo)信号,也就是读取出的信号。

在自旋存储阶段,还需要利用射频脉冲序列来不断翻转铕离子系综的自旋,使得环境的不均匀性在不同离子上产生的相位「色散」不断得到补偿,以保持整个系综的相干性。这种相干保护操作叫做「动力学解耦合」[9][10](dynamical decoupling),也可以显著提升自旋系综的相干时间。在以上这些技术的共同作用下,光脉冲的存储寿命得到了显著地延长。但是仍然会有一些不可避免的退相干因素会干扰系综的相干性,读取出的脉冲强度因此也会随着存储时间的拉长而衰减。我们最终观测到的最长的1/e寿命为52.9±1.2分钟。

为了验证我们的存储器具有相位保护的能力,我们设计了一个光脉冲的干涉实验对其进行了验证。原理大致如下:我们将时间间隔为t,相位差为Δφ的两个光脉冲写入存储器,经过一段时间的存储后,我们使用时间间隔同样为t的两个控制光脉冲进行两次读取;每一个控制光脉冲都会读取出写入的两个脉冲,也就是说两个控制光会读取出四个回波。但由于写入脉冲和控制脉冲之间的间隔都是t,这会导致第一个写入脉冲的第二个回波与第二个写入脉冲的第一个回波在时间上产生了重叠,从而发生干涉。我们验证了,经过1个小时后从存储器中读取出的脉冲仍然可以发生很高可见度的干涉效应,这证明了写入的两个光脉冲之间的相对相位信息被很好的保存住了。

以上就是这个工作的大致介绍。与原子系统相比,硅酸钇中的铕离子系综具有更好的相干特性,这是因为它与外界的相互作用较弱,更不易受到干扰。但是,也正是因为这个原因,它与光场之间的相互作用也较弱,这导致存储效率相较于原子系统要更低(打个不恰当的比喻,如果把迪迦奥特曼存进了存储器,读取出来之后他会发现自己衰弱了一大截)。想要在此基础上实现光量子存储器,还需要在效率和信噪比上进一步努力。


Q&A

  1. 为何匿名?

只是想保护一下自己的知乎账号而已2333。我只是个普通人,在自己的领域内懂得稍微多一些,并不值得这么大的关注度。如果我的回答对您有用、或者让您感到有趣,那我觉得这篇科普就写得很值了。有不少评论说看不懂,我只能表示我尽力了,我在写的时候想的是能够让高中生感兴趣、物理学专业的本科生能够看懂一半即可;如果每个概念都去尝试解释,文章会太过冗长。

2. 读出来的光和存进去的光是同一个吗?

如果两个东西从任何角度看都是一模一样,那就可以认为它们是同一个东西。如果两个光场,它们的偏振、振幅、频率、相位、位置等维度都是一模一样的,那就是完全相同。在实验中,我们不会、也不必要求存入的光和读出的光完全相同,只需要足够相似即可;在物理学上,把足够相似的两个光场称为是「相干的」;如果存储器能够保持写入的光和读出的光足够相似,那我们称这个存储器是「相干的」。在原回答中我也介绍了怎样去验证我们的存储器的相干性,就是做一个光学的干涉实验,干涉实验的可见度就反映了存储器的相干保护能力强弱。

所以读出来的光和存进去的光是同一个吗?严格来说并不完全相同,但是足够相似。

3. 如果我把存了1个小时后的光再存进另一个存储器,是不是意味着又能存1个小时?如果我有无限个存储器,那是不是意味着我能永久存储光了?

想法很好,但是存储器中总会有一些不可避免的因素会导致不可逆的退相干,因此读取出的光脉冲强度会随着存储时间的拉长而衰减。我们读取出的光脉冲幅值在52.9分钟后就会指数衰减至1/e(37%),如果再进第二个存储器,光脉冲会继续指数衰减。读取信号过小的话也就没有使用价值了,因此我们不会这么做。

4. 既然光会衰减,那我们用一个光放大器把它放大不就行了?

不可以这么做,因为量子力学中存在不可克隆定理[11],光子一旦被复制就会破坏原先的状态。这就是为什么存储效率很重要的原因,也是为什么存储光子看起来这么困难的原因:因为光子一旦进了存储器,我们就只能眼睁睁看着它衰减,最多只能用一些手段来延缓这个过程,但无法逆转。

5. 可以存储量子纠缠态吗?

目前还不可以。我特地在原文中强调了相干光存储器与光量子存储器之间的区别,后者是前者的子集。因为后者要求光脉冲中只能包含很少的光子,因此对存储器的效率和信噪比要求更高,这是将来努力的方向。

6. 有哪些应用场景和价值?

大家可能在新闻稿中看到了量子U盘这个词,但是不太明白到底是什么意思。这个概念其实是指将携带量子信息的光子存入存储器中,然后利用经典的交通工具来对存储器进行运输以实现两地之间量子信息的传输。为什么要用这样一种看似笨拙的方法来传递量子信息呢?因为光子在光纤中的传输损耗还是太大了,随着距离的拉长而指数衰减。有人做过估算[12],对于500公里的传输距离来说,光子的传输效率仅为 ,也就是说100亿个光子中只有1个光子能够有效地通过光纤传输过去。如果我有一个存储寿命在小时量级的光量子存储器,那么这种基于经典运输的方式反而更能够更加有效地传输光子。但就像我原回答中所说,我们目前的存储器还不是光量子存储器,还有很多技术挑战需要解决。

对于我们的日常生活来说,量子U盘这个概念确实太过于遥远。评论区中也有朋友提醒了我,全息胶片是需要记录光场的相位信息的,因此也可以算是相干光存储器。但是与我们的存储器区别在于:全息技术需要对光进行测量,但测量的步骤对于光子来说是破坏性的,因此只适用于经典世界的强光;而使用原子或离子作为存储器则是非破坏性的,无论是强光还是单个光子。因此要想实现真正的光量子存储器还是得用微观物理系统。

参考

  1. ^ Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).
  2. ^ Fleischhauer, M. & Lukin, M. D. Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000).
  3. ^ Yang, S.-J., Wang, X.-J., Bao, X.-H. & Pan, J.-W. An efficient quantum light–matter interface with sub-second lifetime. Nat. Photonics 10, 381–384 (2016).
  4. ^ Dudin, Y. O., Li, L. & Kuzmich, A. Light storage on the time scale of a minute. Phys. Rev. A 87, 031801 (2013).
  5. ^ Heinze, G., Hubrich, C. & Halfmann, T. Stopped Light and Image Storage by Electromagnetically Induced Transparency up to the Regime of One Minute. Phys. Rev. Lett. 111, 033601 (2013).
  6. ^ Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).
  7. ^ Ma, Y., Ma, Y.-Z., Zhou, Z.-Q., Li, C.-F. & Guo, G.-C. One-hour coherent optical storage in an atomic frequency comb memory. Nat. Commun. 12, 2381 (2021). https://doi.org/10.1038/s41467-021-22706-y
  8. ^ a b Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).
  9. ^ Souza, A. M., Álvarez, G. A. & Suter, D. Robust dynamical decoupling. Phil. Trans. R. Soc. A. 370, 4748–4769 (2012).
  10. ^ Souza, A. M., Alvarez, G. A. & Suter, D. Robust dynamical decoupling for quantum computing and quantum memory. Phys. Rev. Lett. 106, 240501 (2011).
  11. ^ Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).
  12. ^ Sangouard, N., Simon, C., Riedmatten, H. de & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

类似的话题

  • 回答
    这可真是个大新闻!咱们国家科学家在“光存储”这件事上,一下子把记录时间从之前的几分钟、十几分钟,直接飙升到了一小时,这简直是质的飞跃!通俗理解:就像给数据戴上了一个超级“保温箱”咱们平时说话、看视频,信息都是以电信号的形式存在的,就像一阵风,过去了就没了。而“光存储”呢,简单来说,就是把这些信息“固.............
  • 回答
    好的,我们来用通俗易懂的方式,好好聊聊2018年诺贝尔化学奖的“定向进化”技术,以及它在我们生活中的实际应用。首先,我们得知道这个奖项为什么这么重要。这个奖项颁给了三位科学家:Frances H. Arnold、George P. Smith 和 Sir Gregory P. Winter。他们最重.............
  • 回答
    好的,让我们来通俗易懂地理解一下2017年诺贝尔化学奖授予的“冷冻电镜”技术,以及它对我们生活产生的重大影响。 什么是冷冻电镜?—— 像给分子拍 X 光片,但更清楚!想象一下,你想知道一个非常非常小的东西,比如蛋白质,长什么样子。我们平时用显微镜可以看到一些形状,但如果想看到它最细微的结构,比如它内.............
  • 回答
    这绝对是个挑战,但我们不妨试一试,用纯粹的文字,像给一个从未有过“方向感”的生命体描述“左右”的概念。想象一下,我们面对着一个完全没有感知过空间三维度的实体,它可能连“前后”是什么都不知道。我们要如何才能一步步搭建起“左右”的概念呢?首先,我们需要一个最基础的参照点。这个参照点不能是我们的身体,因为.............
  • 回答
    好的,我们来用通俗易懂的方式详细理解一下矩阵的秩。想象一下,矩阵就像是一个装满了数字的表格,或者说是一个二维的“信息网”。矩阵的秩,顾名思义,就是衡量这个信息网中“独立有效信息”有多少。我们来一步步拆解:1. 矩阵的“信息”是什么?一个矩阵的每一行或每一列都可以看作是一个“向量”,就像一个带有方向和.............
  • 回答
    咱们今天就来聊聊常微分方程,以及它一个特重要的性质——解对初值的连续依赖性。这听起来有点高大上,但其实咱们身边处处都有它的影子,理解起来并不难。想象一下,咱们在玩一个滚球的游戏。你手里拿着一个小球,放在一个斜坡上。这个斜坡,咱们可以把它看作是“微分方程”。微分方程描述的是,当你的球在某个位置(比如某.............
  • 回答
    咱们今天就来聊聊一个听起来有点学术,但其实离我们生活特别近的概念:证伪和可证伪性。想象一下,你是个侦探,你的任务不是去证明某个嫌疑人是有罪的,而是去努力证明他不是有罪的。你手里可能有一些线索,比如嫌疑人案发时有不在场证明,或者有其他更有力的证据指向了别人。你的工作就是搜集一切可能推翻“嫌疑人有罪”这.............
  • 回答
    好的,咱们今天来聊聊 beta 分布,这个名字听起来有点绕,但其实它描述的东西,咱们生活中可能天天都能碰到,就是对“概率的概率”或者“不确定性”的一种描述方式。你想啊,咱们平常说话,“这件事成功的可能性有多大?” 这时候我们脑子里其实是在给一个“概率值”估摸着一个范围。比如,你说“我觉得这事儿成功的.............
  • 回答
    战胜癌魔的新篇章:通俗理解癌症免疫疗法及其重大意义想象一下,我们身体里有一支英勇的军队——免疫系统。这支军队日夜巡逻,识别并消灭入侵的细菌、病毒,以及体内那些不按常理出牌、不断增殖的癌细胞。然而,癌细胞就像狡猾的叛徒,它们学会了伪装,甚至能够悄悄地潜伏在免疫系统的眼皮底下,逃避追捕。2018年的诺贝.............
  • 回答
    想象一下,我们的身体就像一个庞大的城市,而细胞就是这个城市里辛勤工作的市民。这些市民需要氧气才能生存和工作,就像城市需要电力一样。但是,就像城市里的电力供应可能会时有时无,有时候充裕,有时候又很紧张,我们身体里的细胞也需要一种机制来感知和应对氧气浓度的变化。2019年的诺贝尔生理学或医学奖,就是颁给.............
  • 回答
    韦达跳跃:一个关于数论的奇妙故事想象一下,我们生活在一个由数字组成的奇妙世界里。在这个世界里,数字们有着自己的规律和秘密,等待着我们去发现。今天,我们要讲一个关于数字们之间“跳跃”的故事,这个故事的主角叫做“韦达跳跃”。 什么是韦达跳跃?“韦达跳跃”这个名字听起来有点高大上,但其实它描述的是一个非常.............
  • 回答
    想象一下,我们把一大堆特别特别小的粒子,比如原子,放进一个冷得不能再冷的“冰柜”里。这个“冰柜”可不是普通的冰箱,它能把粒子的温度降到接近绝对零度(273.15℃)。当我们把温度降到这么低的时候,这些原子们就变得非常“听话”了。它们不再像平时那样到处乱跑,各自为政,而是慢慢地、慢慢地,开始“黏”在一.............
  • 回答
    想象一下,我们日常生活中最熟悉的液体,比如水、牛奶、油,它们都表现得非常“乖巧”。你倒它,它就顺着杯子流下来;你搅它,它就乖乖地转;你拿东西放进去,它也就那么静静地待着。这些,都是我们称为“牛顿流体”的典型代表。它们的“乖巧”程度,和施加在它们身上的力(也就是你搅动、倾倒的动作)是成正比的,而且,它.............
  • 回答
    嘿,想象一下,我们每个人体内都有一个看不见的“生物钟”,它就像一个精密的计时器,指挥着我们身体的各种活动,比如什么时候该睡觉,什么时候该醒来,什么时候该吃饭,甚至我们体温什么时候最高,什么时候最低。这个神奇的钟,就是我们今天要聊的“昼夜节律”。2017年的诺贝尔生理学或医学奖,就颁给了三位科学家,他.............
  • 回答
    2020年的诺贝尔生理学或医学奖,颁给了三位杰出的科学家:Harvey J. Alter、Michael Houghton 和 Charles M. Rice,以表彰他们在发现丙型肝炎病毒(HCV)方面所做的开创性工作。这项发现的重要性,就好比是在一场漫长而痛苦的斗争中,终于找到了敌人隐藏的身份,从.............
  • 回答
    咱们今天就来聊聊一个在投资理财界经常露面的词儿——内部收益率,也就是IRR。听着挺专业的,但其实用大白话讲,它就是评估一个投资项目值不值得干的一个“尺子”。想象一下,你是个小老板,手里有点闲钱,想做个买卖。 这个买卖呢,不是说今天买明天卖就能赚钱,而是说你得投一笔钱进去,然后这个买卖会持续好几年,每.............
  • 回答
    量子传输:不是“瞬移”,而是“克隆”信息的奥秘你有没有想过,有没有一种办法,能把某个物体的信息瞬间传递到另一个地方,就像科幻电影里的“空间跳跃”一样? 很多时候,我们会把“量子传输”和这种“瞬移”混为一谈,但实际上,它和科幻电影里的那种“把人传过去”的概念,有着本质的区别。通俗点说,量子传输更像是在.............
  • 回答
    咱们聊聊“分布式系统”,这个词听起来有点儿高大上,但其实道理很简单,就像我们生活中经常遇到的一些事情一样。什么是分布式系统?通俗地讲想象一下,你有一项特别大的工作要做,比如要同时管理全国所有客户的订单,或者要处理海量的数据分析。如果一个人(一台电脑)来做,那简直是分身乏术,忙不过来,而且一旦这个人(.............
  • 回答
    嘿,咱们今天来聊聊“极大似然估计法”,听着名字挺高大上的,但其实骨子里是个特别接地气的想法。就好比我们平时在生活里做判断一样,只不过它有了一套数学的规矩。先抛开数学,咱们从生活里找个例子。想象一下,你面前有这么一个盒子,里面装了一些红球和蓝球。你不知道里面到底有多少红球,多少蓝球,只知道球的总数是确.............
  • 回答
    想象一下,你的基因就像一本非常、非常厚的食谱,里面记录了你身体如何建造、如何运转的所有指令。而基因编辑技术,比如CRISPR,就像一把极其精密的“分子剪刀”,它的目标是找到食谱里的一个特定“词语”(也就是DNA序列),然后把它剪掉、替换或者修改。脱靶效应,通俗地说,就是你的分子剪刀不小心剪错了地方。.............

本站所有内容均为互联网搜索引擎提供的公开搜索信息,本站不存储任何数据与内容,任何内容与数据均与本站无关,如有需要请联系相关搜索引擎包括但不限于百度google,bing,sogou

© 2025 tinynews.org All Rights Reserved. 百科问答小站 版权所有